(ACiE02)

Soil Mechanics and Foundation Engineering (council)

2. Soil Mechanics and Foundation Engineering

2.1 Soil properties and laboratory tests: tests for strength, permeability, compressibility, phase relationships; determination of index and engineering properties of soils; soil classification (descriptive, textural, ISI, MIT, USCS); boring log interpretation; sieve analysis and interpretation of results; determination of Atterberg limits of soils. (ACiE0201)

2.2 Stresses on soil and seepage: effective stress (factors affecting effective stress, capillary rise, and quick sand conditions); seepage analysis [Seepage pressure, flow nets and their applications]; soil compressibility (including various indices) and compaction (definition, affecting factors). (ACiE0202)

2.3 Shear strength of soil and stability of slopes: Concept of shear strength, principal planes and principal stresses; Mohr-Coulomb theory of shear strength; calculation of normal and shear stresses at different planes; relation of principle stress at failure condition; types of shear tests; stability of slopes. (ACiE0203)

2.4 Soil exploration, earth pressure and retaining structures: soil exploration (methods, planning, soil sampling and samplers, field tests, site investigation reports); earth pressure theories; stability analysis of retaining walls; techniques to increase stability of retaining walls. (ACiE0204)

2.5 Fundamentals of foundation: Definition, Types (Shallow and Deep), functions, factor affecting, site investigation of foundation, concept of spread and mat foundation. (ACiE0205)

2.6 Bearing capacity and foundation settlements: bearing capacity (types, effects of various factors); modes of foundation failure; Terzaghi's general bearing capacity theory; ultimate bearing capacity of cohesion-less and cohesive soils; consolidation (concept, types and tests); settlement (types, nature, effects and calculations) (ACiE0206)

Soil Types and Classification

- Soil is defined as an assemblage of discrete solid particles of organic or inorganic composition.
- Soil are formed by weathering of rocks (mechanical disintegration or Chemical decomposition).
- Soils resulting from disintegration of rock may stay at the place of their formation, known as residual soil or sedentary soil.
- If the soil are carried away by forces of gravity, water, wind and ice and deposited at another location, they are known as transported soil.

Fig: Geological Cycle (K. R. Arora, "Soil Mechanics and Foundation Engineering," Standard Publishers Distributors, Delhi, 2008)

Transported soil are further classified based on mode of transportation and place of deposition:

- Glacial Soil or (Till) or (Drift): Soils that are transported by glaciers.
- Aeoline deposit or Loess:
- Alluvial deposit:
- Marine Deposit:
- Lacustrine deposit:
- Colluvial (Talus):

Soil deposits formed by **rivers and streams.** Soil deposit formed by **sea water**.

Soil deposit in **lake beds**.

Soil deposited formed by **wind**.

Soil that are transported by gravity.

Fig: Transported soil (Alluvial) [Source: constructor.org]

Three Phase System of Soil

- Soil consists of solid, liquid (water) and air. Hence, soil is said to be three phase system.
- Water and air space fills up the voids in the solid. Hence, water and air together constitute void space.
- Dry Soil: Voids contains no water (i.e., only air is in the voids)
- Saturated Soil: Voids contain no air (i.e., only water in the voids)

Vølumetric Relationship:

- Voids Ratio (**e**) = $\frac{V_v (Volume \ of \ voids)}{V_s (Volume \ of \ solids)}$; (can be > 1)
 - Generally, **e** for (coarse grained soil < fine grained soil).
- > Porosity (**n**) = $\frac{V_{\nu}(Volume \ of \ Voids)}{V(Total \ Volume)}$

> Expressed as percentage ($0 \le n \le 100$)

Relation:

$$\frac{1}{n} = \frac{V}{V_v} = \frac{V_s + V_v}{V_v} = 1 + \frac{V_s}{V_v} = 1 + \frac{1}{e} = \frac{1 + e}{e} \text{ Hence, } n = \frac{e}{1 + e}$$

Degree of Saturation: (S or S_r)

•
$$S = \frac{V_w}{V_v} \times 100\% = \frac{Volume \ of \ water}{Volume \ of \ voids} \times 100\%$$

- For Fully saturated soil, $V_w = V_v$; Hence S=100% or 1.
- For Perfectly Dry Soil, $V_w=0$; Hence S=0 or 0 %
- For Partially Saturated Soil (General Case): $0 \le S \le 100$
- Air Content (a_c)

$$a_c = rac{V_a}{V_v} = rac{Volume \ of \ air \ voids}{Volume \ ot \ total \ voids} = 1 - S$$

- $a_c + S = 1$
- Percentage Air Voids (n_a)
 - $\square n_a = \frac{Volume \ of \ air \ voids}{Total \ volume \ of \ soil \ mass} = \frac{V_a}{V}$
 - Relation:

•
$$n_a = \frac{V_a}{V} = \frac{V_a}{V_v} \times \frac{V_v}{V} = a_c \times n \implies n_a = n a_c$$

- Water Content (w)
 - $w = \frac{Weight \, of \, water}{Weight \, of \, Solids} \times 100 = \frac{W_w}{W_s} \times 100$
 - For dry soil, w = 0%
 - In General; $w \ge 0\%$; (with no upper limit)

• Unit Weight (γ) of soil is its weight per unit volume.

• Bulk Unit Weight ($\gamma \text{ or } \gamma_t$) = $\frac{\text{Total weight of the soil mass }(W)}{\text{Total Volume of soil mass }(V)}$ = $\frac{W_s + W_w}{V_s + V_w + V_a}$ = $\frac{W_s + W_w}{V_s + V_v}$; ($w_a = 0$)

Dry Unit Weight (γ_d) = $\frac{Weight of Solids}{Total Volume} = \frac{W_s}{V}$

Dry unit weight indicates denseness of soil. Higher the dry density, more dense is the soil.

• Saturated Unit Weight (γ_{sat}) = $\frac{Total weight of saturated sample (W_{sat})}{Total Volume of Soil}$

It is Bulk Unit Weight when the sample is fully saturated.

• Submerged Unit Weight ($\gamma_{sub} \text{ or } \gamma' = \frac{Submerged weight of soil solids}{Total Volume} = \frac{W_{sub}}{V}$

- When a soil mass is submerged below GWT, a buoyant force acts on the soil solids which is equal in magnitude to the weight of water displaced by the solids.
- Mathematically, $(\gamma_{sub} \text{ or } \gamma' = \gamma_{sat} \gamma_w)$; $\gamma_w = Unit Weight of Water = 9.81 \text{ kN/m}^2$

• Unit Weight of Solids (
$$\gamma_s$$
) = $\frac{W_s}{V_s}$

Specific Gravity (or Specific Gravity of Soil Solids)

• $G_s = G = \frac{Weight of given volume of solids}{Weight of equal volume of water at 4^{\circ}C} = \frac{W_s}{V_s \gamma_w} = \frac{\gamma_s}{\gamma_w}$ [γ_w =9.81 kN/m³ or 1 gm/cc]

Typical Values of Specific Gravity:

Soil Types	Specific Gravity
Clean Sand and Gravel	2.65-2.68
Silt and Silty Sands	2.66-2.70
Inorganic Clays	2.70-2.80
Soil high in mica, iron	2.75-2.85
Organic Soil	Quite Variable; May fall below 2.0

MCQ Questions Preparation

BDCCDCCD 1. The term Soil Mechanics was coined by:

- a. Kray
- b. Karl Tergazhi
- c. Leygue
- d. Fellenius
- 2. Pick up the correct sequence of geological cycle of formation of soil?
 - a. Transportation-Upheaval-Deposition-Weathering
 - b. Transportation-Deposition-Weathering- Upheaval
 - c. Weathering- Upheaval- Deposition- Transportation
 - d. Weathering-Transportation- Deposition- Upheaval
- J. If the soil stays at a place above the parent rock where it is produced, then it is called:
 - a. Stationary soil
 - b. Static Soil
 - c. Residual Soil
 - d. Immobile Soil
- 4. The soil transported by the running water is called:
 - a. Aeolian soil
 - b. Marine soil
 - c. Alluvial soil
 - d. Lacustrine soil

- 5. Glacial soils are those soils which are:
 - a. Deposited in sea water
 - b. Deposited in lakes
 - c. Transported by running water
 - d. None of these
- 6. Loess is
 - a) Over consolidated clay
 - b) Fine Sand
 - c) Wind Borne Soil
 - d) Marine Soil
- 7. Soil is considered as
 - a. Single phase system
 - b. Two Phase system
 - c. Three Phase System
 - d. None of the above
- 8. Soils are derived from:
 - a. Igneous rock
 - b. Sedimentary rock
 - c. Metamorphic rock
 - d. Any one of these

- 9. The relation between the air content (a_c) and the degree of saturation (s) is :
 - a. $(a_C)=s$

BDBC

- b. $(a_{C})=1-s$
- c. $(a_{C})=1+s$
- d. $(a_{\rm C})=1/s$

10. The degree of saturation for fully saturated soil is:

- a. 0.25
- b. 0.50
- c. 0.75
- d. 1.00

11. The ratio of volume of voids to the total volume of soil mass is called:

- a. Water Content
- b. Porosity
- c. Void Ratio
- d. Degree of Saturation

12. The ratio of the unit weight of the soil solids to that of the water is called:

- a. Void Ratio
- b. Porosity
- c. Specific Gravity
- d. Degree of Saturation

13. Water content of soil can

- a. Never be greater than 100%
- b. Take values only from 0% to 100%
- c. Be less than 0%

d. Be greater than 100%

- 14. Valid range for the degree of saturation (S) of soil in percentage is
 - a. S > 0
 - b. $S \leq 0$
 - c. 0 < S < 100
 - **d.** $0 \le S \le 100$

15. Valid range for percentage air voids n_a is

- *a.* $0 < n_a < 100$
- *b.* $0 \le n_a \le 100$
- *c.* $n_a > 0$
- *d.* $n_a \leq 0$

16. Select the correct range of density index (I_D)

a. $I_D > 0$ *b.* $I_D \ge 0$ *c.* $0 < I_D < 1$ *d.* $0 \le I_D \le 1$

17. Residual soils are formed by

- a. Glaciers
- b. Wind
- c. Water
- d. None of the above

18. When the degree of saturation is zero, the soil mass under consideration represents

- a. One phase system
- b. Two phase system with soil and air
- c. Two phase system with soil and water
- d. Three phase system

 $\frac{1}{2}$ 9. When the degree of saturation is one, the soil mass under consideration represents

- a. One phase system
- b. Two phase system with soil and air
- c. Two phase system with soil and water
- d. Three phase system
- 20. In wet soil mass, air occupies one-seventh of its volume and Water occupies one- eighth of its volume. What will be the ratio of volume of voids with respect to the total volume?
 - a. 0.329
 - b. 0.279
 - c. 0.432
 - d. 0.268

Some Relationship:

Relation between e and n

•
$$\frac{1}{n} = \frac{V}{V_v} = \frac{V_s + V_v}{V_v} = 1 + \frac{V_s}{V_v} = 1 + \frac{1}{e} = \frac{1+e}{e}$$
 Hence, $n = \frac{e}{1+e}$ or $e = \frac{n}{1-n}$

Relation between e, w, G and S:

•
$$w = \frac{W_w}{W_s} = \frac{\gamma_w}{\gamma_s} \frac{V_w}{V_s} = \frac{1}{G} \frac{V_w}{V_s}$$
 $[G = \frac{\gamma_s}{\gamma_w}]$
$$= \frac{1}{G} * \left(\frac{V_w}{V_v} * \frac{V_v}{V_s}\right) = \frac{1}{G} * S * e$$

- Hence: [Se=Gw]
- Relation between γ_t , **G**, **e**, **w** and γ_w :

•
$$\gamma_t = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_v} = \frac{W_s (1 + \frac{W_w}{W_s})}{V_s (1 + \frac{V_v}{V_s})} = \frac{\gamma_s (1 + w)}{(1 + e)} = \frac{G\gamma_w (1 + w)}{(1 + e)}$$

• $\gamma_t = \frac{G\gamma_w (1 + w)}{(1 + e)} = \frac{G\gamma_w (1 + Se/G)}{(1 + e)} = \frac{\gamma_w (G + Se)}{(1 + e)}$

• Saturated Unit Weight
$$(\gamma_{sat}) = \frac{\gamma_w(G+e)}{(1+e)}$$
 [Since; S=1]

- Dry Unit Weight $(\gamma_d) = \frac{G\gamma_w}{(1+e)}$ [Since; S=0]
- Submerged Unit Weight $(\gamma_{sub} \text{ or } \gamma' = (\gamma_{sat} \gamma_w) = \frac{\gamma_w(G+e)}{(1+e)} \gamma_w = \frac{\gamma_w(G+e-1-e)}{(1+e)} = \frac{\gamma_w(G-1)}{(1+e)}$

Most remember these formula on Day 02

Relation between γ_t , w and γ_d :

Relation between γ_d , G, w and n_a

$$\bullet V = V_s + V_w + V_a$$

$$= 1 = \frac{V_s + V_w + V_a}{V} = \frac{V_s}{V} + \frac{V_w}{V} + \frac{V_a}{V} = \frac{V_s}{V} + \frac{V_w}{V} + n_a$$

 $= 1 - n_a = \frac{v_s}{v} + \frac{v_w}{v} = \frac{w_s/G\gamma_\omega}{v} + \frac{w_w/\gamma_\omega}{v} = \frac{\gamma_d}{G\gamma_\omega} + \frac{wW_s/\gamma_\omega}{v} = \frac{\gamma_d}{G\gamma_\omega} + \frac{w\gamma_d}{\gamma_\omega} = \frac{\gamma_d}{\gamma_\omega} \left(\frac{1}{G} + w\right)$

• (1-
$$n_a$$
) $\gamma_{\omega} = \gamma_d \left(\frac{1}{G} + w\right) = \gamma_d \left(\frac{1+wG}{G}\right)$

$$\gamma_d = \frac{\mathbf{G}\gamma_{\omega}(1 - n_a)}{1 + wG}$$

- Relation between mass specific gravity, G_m and specific gravity of soil solids, G (at dry condition):
 - Mass specific gravity $(G_m) = \frac{\gamma}{\gamma_w}$ (for dry condition, $\gamma = \gamma_d$); So, $G_m = \frac{\gamma_d}{\gamma_w}$

•
$$\gamma_d = \frac{G\gamma_w}{(1+e)} \iff \frac{\gamma_d}{\gamma_w} = \frac{G}{(1+e)}$$

$$G_m = \frac{G}{(1+e)}$$

Most remember these formula on Day 02