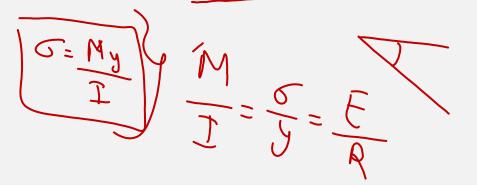


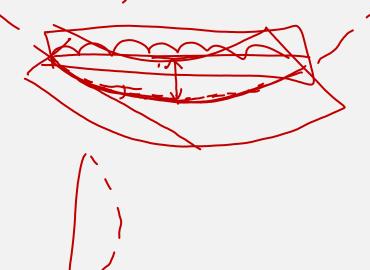
NEPAL ENGINEERING COUNCIL LICENSE EXAM PREPARATION COURSE

4.2-) Strew-Strain 4.3-) Bending

FOR

CIVIL ENGINEERS


4. Structural Mechanics

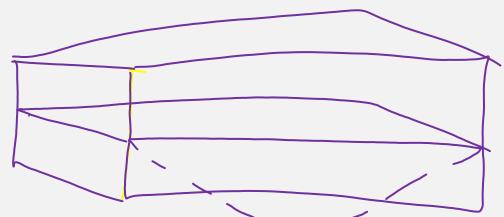

4.3 Theory of flexure and columns

Sub topics

- 280KN Co-planar and pure bending —

- Elastic curve
- Angle of rotation
- Radius of curvature and flexural stiffness; (E I)
- Deflection; Bending stress; (≤)
- Euler's formula for long column.

Co-planar and pure bending


The traverse sections which are plane and normal before bending remain plane and normal to neutral axis.

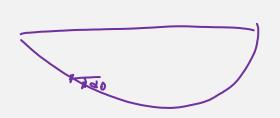
- Every layer is free to expand or contract
- Modulus of elasticity has same value for tension and compression.
- Bends as arc of circle.
 Radius of curvature is large!

Pure bending: No shear force only moment

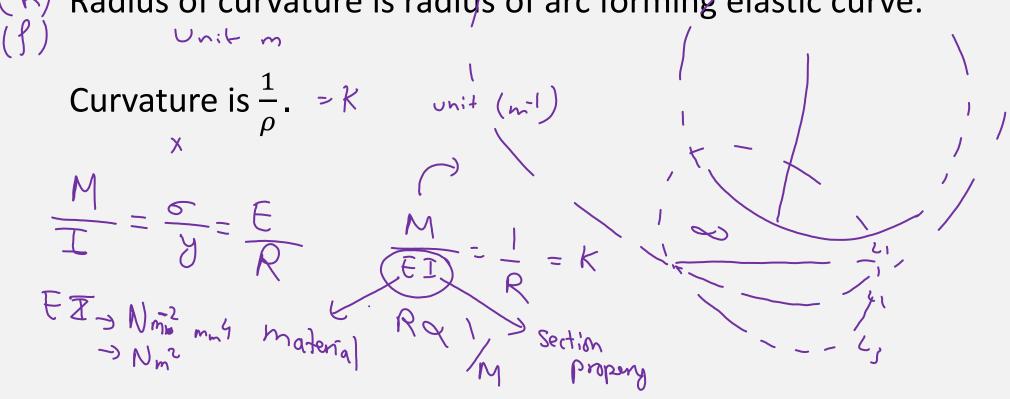
Elastic curve

Beam subjected to couples Elastic curve is arch of circle

Centroidal axis, neutral plane


Centroidal axis deflects in form of elastic curve or deflected shape.

Angle of rotation


$$d\theta = \frac{as}{\rho}$$

Radius of curvature and flexural stiffness

Radius of curvature is radius of arc forming elastic curve.

Deflection

Displacement of the neutral plane from original position

Slope: Angle in radian made by tangent at any point of

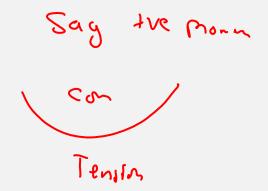
hence the second of the secon

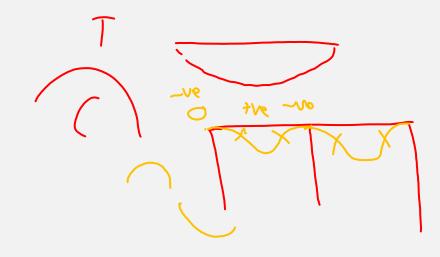
Flexural formula

$$\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$$

For a section M/I and E/R is constant.

$$\frac{1}{8} = 1$$


Bending Stress

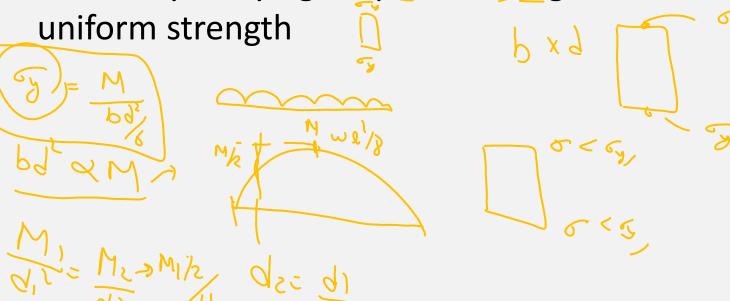


For sagging: tension below NA, compression above NA

For hogging: tension above NA, compression below NA

Proportional to distance from NA

Uniform Strength Beam



Each section has bending stress equal to allowable stress

Either by varying depth or height we can make beam of

Euler's formula for long column

FANA ACI

Slenderness ratio: $\lambda = \frac{effective\ length}{radius\ of\ gyration}$

Short column fails by crushing $\lambda < 32$

$$(P_c) = \sigma_c . A$$

Long column fails by buckling $\lambda > 120$

$$P_c = \frac{\pi^2}{l_e^2} \cdot EI$$

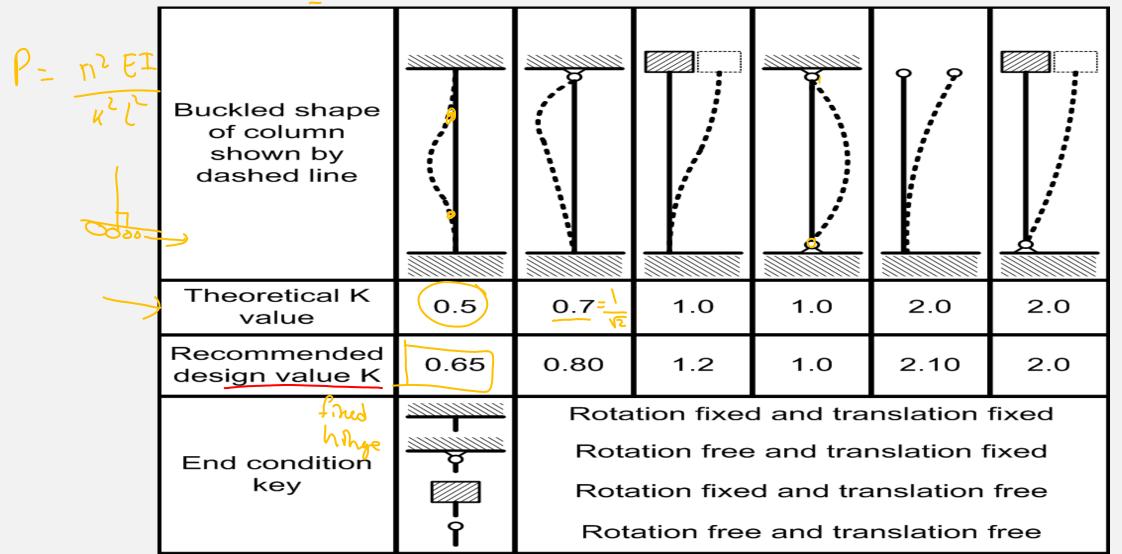
$$\frac{20}{24}$$

$$= \frac{1}{12}$$

$$= \frac{1}{12}$$

Euler's formula for long column

$$P_{x}k^{2}xl^{2}=contact$$

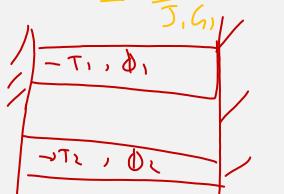

$$P_{c} = \frac{\pi^{2}}{l_{e}^{2}} \cdot EI = \frac{\pi^{2}}{k^{2} l^{2}} \cdot EI$$

Buckles in plane of major axis

Effective length (I) depends on end condition of member

Euler's formula for long column

Tortional formula



$$\frac{T}{I} = \frac{\tau}{r} = \frac{G\phi}{L}$$

Q = LT JG

Members in parallel connection

 ϕ constant ,T additive

Members in series connection

 ϕ additive ,T constant

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1 = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = T_1$$

Relation of modulus

$$E = 2 G (1 + μ) = 3 K (1 - 2 μ)$$

$$k=1, G=2, E=?=3.6$$

$$μ=0.25-0.3 \text{ for steel } 3 κ_1 G$$

$$μ=0.15-0.2 \text{ for concrete}$$

$$G = \begin{cases} E = 3.6, & v=0.3 \\ G = \frac{1}{2}(1 + ν) = 1.3 \end{cases}$$

$$G = \begin{cases} G = \frac{1}{2}(1 + ν) = \frac{1}{2$$

Deflection

Area of M/El diagram gives slope Moment of area of M/El diagram gives deflection

SR. NO.	TYPE OF BEAM	MAX. BM	SLOPE	DEFLECTON
1		M	$\theta = \frac{ML}{EI} = \frac{ML}{EI}$	$\delta = \theta \times \frac{L}{2} = \frac{ML^2}{2EI}$
2		WL	$\theta = \frac{ML}{2EI} = \frac{WL^2}{2EI}$	$\delta = \theta \times \frac{2L}{3} = \frac{WL^3}{3EI}$
3		WL ²	$\theta = \frac{ML}{3EI} = \frac{WL^3}{6EI}$	$\delta = \theta \times \frac{3L}{4} = \frac{WL^4}{8EI}$
4		<u>WL</u> ²	$\theta = \frac{ML}{4EI} = \frac{WL^3}{24EI}$	$\delta = \theta \times \frac{4L}{5} = \frac{WL^4}{30EI}$
5	min inn	WL 4	$\theta = \frac{ML}{4EI} = \frac{WL^2}{16EI}$	$\delta = \theta \times \frac{L}{3} = \frac{WL^3}{48EI}$
6		<u>WL</u> ² 8	$\theta = \frac{ML}{3EI} = \frac{WL^3}{24EI}$	$\delta = \theta \times \frac{5L}{16} = \frac{5WL^4}{384EI}$

Geometric Shape		Area	Centroid	
			C_1	C_2
Rectangle	$ \begin{array}{c c} & C_1 & C_2 \\ & & C_2 \\ & & & C_2 \end{array} $	bh	<u>b</u> 2	<u>b</u> 2
Triangle	$ \begin{array}{c c} C_1 & C_2 \\ \hline h & b \end{array} $	<u>bh</u> 2	<u>b</u> 3	2 <i>b</i> 3
Parabolic spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline & y = kx^2 \\ \hline & b \end{array} $	<u>bh</u> 3	<u>b</u> 4	3 <i>b</i> 4
	$ \begin{array}{c c} C_1 & C_2 \\ y = kx^2 \end{array} $	2 <i>bh</i> 3	3 <i>b</i> 8	5 <i>b</i> 8
Cubic spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline h & y = kx^3 \end{array} $	<u>bh</u> 4	<u>b</u> 5	4 <i>b</i> 5
	$ \begin{array}{c c} & C_1 \\ & V_2 \\ & V_3 \\ & V_4 \\ & V_5 \\ & V_5 \\ & V_7 \\ &$	$\frac{3bh}{4}$	2 <i>b</i> 5	3 <i>b</i> 5
General spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline & y = kx^n \\ \hline & b \\ \end{array} $	<u>bh</u> n+1	<u>b</u> n+2	$\frac{b(n+1)}{n+2}$

Area of M/El diagram gives slope

Moment of area of M/El diagram gives deflection

				<u> </u>	~ :
SR. NO.	TYPE OF BEAM	MAX. BM	SLOPE	DEFLECTON	
1		M	$\theta = \frac{ML}{EI} = \frac{ML}{EI}$	$\delta = \theta \times \frac{L}{2} = \frac{ML^2}{2EI}$	
2		WL	$\theta = \frac{ML}{2EI} = \frac{WL^2}{2EI}$	$\delta = \theta \times \frac{2L}{3} = \frac{WL^3}{3EI}$	
3		WL ²	$\theta = \frac{ML}{3EI} = \frac{WL^3}{6EI}$	$\delta = \theta \times \frac{3L}{4} = \frac{WL^4}{8EI}$	
4		<u>WL</u> ²	$\theta = \frac{ML}{4EI} = \frac{WL^3}{24EI}$	$\delta = \theta \times \frac{4L}{5} = \frac{WL^4}{30EI}$	
5		WL 4	$\theta = \frac{ML}{4EI} = \frac{WL^2}{16EI}$	$\delta = \theta \times \frac{L}{3} = \frac{WL^3}{48EI}$	
6		<u>WL</u> ²	$\theta = \frac{ML}{3EI} = \frac{WL^3}{24EI}$	$\delta = \theta \times \frac{5L}{16} = \frac{5WL^4}{384EI}$	

Geometric Shape		Area	Centroid	
			C_1	C_2
Rectangle	$ \begin{array}{c c} & C_1 & C_2 \\ & & C_2 \\ & & & C_2 \end{array} $	bh	<u>b</u> 2	<u>b</u> 2
Triangle	$ \begin{array}{c c} C_1 & C_2 \\ \hline h & b \end{array} $	<u>bh</u> 2	<u>b</u> 3	2 <i>b</i> 3
Parabolic spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline & y = kx^2 \\ \hline & b \end{array} $	<u>bh</u> 3	<u>b</u> 4	3 <i>b</i> 4
	$ \begin{array}{c c} C_1 & C_2 \\ y = kx^2 \end{array} $	2 <i>bh</i> 3	3 <i>b</i> 8	5 <i>b</i> 8
Cubic spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline h & y = kx^3 \end{array} $	<u>bh</u> 4	<u>b</u> 5	4 <i>b</i> 5
	$ \begin{array}{c c} & C_1 \\ & V_2 \\ & V_3 \\ & V_4 \\ & V_5 \\ & V_5 \\ & V_7 \\ &$	$\frac{3bh}{4}$	2 <i>b</i> 5	3 <i>b</i> 5
General spandrel	$ \begin{array}{c c} C_1 & C_2 \\ \hline & y = kx^n \\ \hline & b \\ \end{array} $	<u>bh</u> n+1	<u>b</u> n+2	$\frac{b(n+1)}{n+2}$

Based on the governing equation for the theory of pure bending which of the following is valid

a. Bending moment = the product of bending stress and the section modulus

b. Bending strength = product of modulus of elasticity and curvature

c. Moment resistance = the product of flexural rigidity and the curvature

d. Bending stress = flexural rigidity per unit radius

If a constant section beam is subjected to uniform bending moment throughout, it bends as

- a. zig zag
- b. catenary
- circular arc
- ___d. parabolic arc

What is the stress developed in bending a 10 mm diameter steel rod of $E = 2 \times 10^{5}$ N/mm² to 2000 mm diameter?

a.500 N/mm²

₩.1000 N/mm²

c.1500 N/mm²

d. 2000 N/mm²

Circular beam of uniform strength can be made by varying the diameter in such way that

- a M/Z is constant
- b. σ/Y is constant
- c. M/R is constant
- d. E/R is constant

M = 02

M/Z

Which is the following statement is true?

- a. The strength of a fibre is proportional to its distance from neutral axis.
- b. The sum of all the compressive force above neutral layer must be equal to the sum of tensile force below neutral layer.
- c. The vertical plane through which load is applied to avoid torsion in the cross section is called load plane.
- d. All of the above are true.

The section modulus of a rectangle with breadth B and depth d will be:

- a. $Bd^3/6$
- b. $Bd^3/12$
- c. $Bd^2/6$
- d. $Bd^2/12$

What is the effective length of compressive member when both end are hinged?

- a. 0.65L
- b. L
- c. 2L
- d.1.5L

If the value of flexural stiffness of 3 m long column fixed at both end is 2000 Nm2 . The maximum permissible axial load is

- a.1.5 KN
- b. 1.7 KN
- c. 2.2 KN
- d. 3 KN

Thank YOU!!!