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4.1. GENERAL 
 

4.1.1. Properties of fluid: mass, weight, specific weight, density, specific 

volume, specific gravity, viscosity 

1.1.Continuum:  
In dealing with fluid flow relations on a mathematical or analytical basis, it is necessary to consider that the 

actual molecular structure is replaced by a hypothetical continuous medium, called the continuum. 

 

1.2.Fluid: 
A fluid is a substance that deforms continuously when subjected to a shear stress, no matter how small the 

shear stress may be. 

Shear force is the force component tangent to the surface, and this force divided by area of the surface is 

the average shear stress over the area. Shear stress at a point is the limiting value of shear force to area as 

area is reduced to the point.  

 

1.3.Newton’s Experiment:  
A substance is placed between two closely spaced parallel plates so large that conditions at their edges may 

be neglected. 

The lower plate is kept fixed. 

Force F is applied to upper plate, if the force causes the upper plate to move with steady velocity, no matter 

how small the magnitude of F, the substance between two plates is a fluid. 

 
Figure 1 Newtons Experiment 

F is directly proportional to area of contact A, steady velocity U and inversely proportional to the thickness 

between the plate t. 

𝐹 ∝  
𝐴𝑈

𝑡
 ; 𝐹 = μ

𝐴𝑈

𝑡
 

μ is proportionality factor and includes the effect of particular fluid. 

Shear Stress (𝜏) =
𝐹

𝐴
=  μ

U

t
 

The velocity at upper layer (adjacent to upper plate) of the fluid will be same as the velocity of upper plate, 

i.e. U. Similarly, velocity at lower layer (adjacent to lower plate) of the fluid will be same as velocity of 

lower plate, i.e. 0 (as lower plate is fixed). This phenomenon at the boundary of the fluid is known as NO 

SLIP CONDITION. This variation in velocity creates a velocity gradient in fluid. 

 

The ratio U/t is the angular velocity of line ab, or it is the rate of angular deformation of the fluid. Angular 

velocity can also be written as; du/dy 

du/dy is also known as velocity gradient.  

𝜏 = μ
𝑑𝑢

𝑑𝑦
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It is the relation between shear stress and rate of angular deformation for the one-dimensional fluid flow. 

Proportionality factor μ is called the viscosity of fluid.  

 

Fluids are classified as Newtonian and non-Newtonian. In Newtonian fluid, there is a linear relation 

between the magnitude of applied shear stress and the resulting rate of deformation. 

𝜏 = μ
𝑑𝑢

𝑑𝑦
 

In non-Newtonian fluid, there is a nonlinear relation between the magnitude of applied shear stress and the 

rate of angular deformation. 

𝜏 = μ(
𝑑𝑢

𝑑𝑦
)𝑛 ; Where n ≠1 

An ideal plastic has definite yield stress and a constant linear relation of 𝜏 𝑎𝑛𝑑 
𝑑𝑢

𝑑𝑦
  

𝜏 = 𝜏0 + μ
𝑑𝑢

𝑑𝑦
 

A thixotropic substance such as printers ink, has viscosity that is dependent upon the immediately prior 

angular deformation of the substance and has tendency to solidify at rest 

Gases and most common liquid tend to be Newtonian fluids; long chained hydrocarbons may be non- 

Newtonian. 
 

 

 

 
Figure 2 Newtonian and Non-Newtonian Fluids 

1.4.Dimensions and Units  

System Mass Length Time  Force  Temperature 

SI kg m s N K 

Metric, cgs g cm s dyn K 

Metric, mks kg m s kgf K 
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1.5.Prefixes for powers of 10 SI units 

Multiple SI Prefix Abbreviation 

109 Giga G 

106 Mega M 

103 Kilo k 

10-2 Centi c 

10-3 Milli m 

10-6 Micro μ 

10-9 nano n 

10-12 pico p 

 

1.6.Viscosity:  
Viscosity is the property of fluid by virtue of which it offers resistance to shear. Newton’s law of viscosity 

states that for a given rate of angular deformation of fluid the shear stress is directly proportional to 

viscosity.  

Highly viscous: Molasses and Tar 

Low Viscous: Water and air 

Viscosity depends on the cohesion and rate of transfer of molecular momentum of fluid.  

Cohesion appears to be the predominant cause of viscosity in liquid. So with increase in temperature, 

viscosity of liquid decreases. 

Transfer of molecular momentum appears to be the predominant cause of viscosity in gases. So with 

increase in temperature, viscosity of gases also increases. 

 

1.7.Absolute Viscosity 
Also known as ‘dynamic viscosity’ of ‘coefficient of viscosity’ or simply as ‘viscosity’. 

μ =
𝜏

du/dy
 

Unit of shear stress: N/m2 

Unit of velocity gradient: 
𝑚/𝑠

𝑚
=

1

𝑠
 

Unit of absolute viscosity = N.s/m2 

 

Parameter 

Unit (SI) IN cgs  IN FLT Dimension IN MLT Dimension 

Force (F) N dyn F MLT-2 

Area (A) m2 cm2 L2 L2 

Shear Stress (𝝉 = F/A) N/m2 dyn/cm2 FL-2 ML-1T-2 

Velocity gradient 

(du/dy) 

1/s 1/s T-1 T-1 

Viscosity 𝛍 =
𝝉

𝐝𝐮/𝐝𝐲
 N.s/m2 dyn.s/cm2 FL-2T ML-1T-1 

 
A common unit of viscosity in cgs unit is called poise (P) = 1 dyn.s/cm2. The SI unit is 10 times larger than 

the poise unit.  

The dynamic viscosity of water is 8.90 × 10−4 Pa.s or 8.90 × 10−3 dyn. s/cm2 or 0.890 cP at about 25 

°C.Water has a viscosity of 0.0091 poise at 25 °C, or 1 centipoise at 20 °C. 

 

1.8.Kinematic Viscosity:  
Ratio of absolute viscosity to density of the fluid. 

The equation is written as; 

ν = μ / ρ 
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We have: 

ν: Kinematic viscosity 

ρ: fluid density 

μ: Dynamic viscosity 
 

Parameter Unit (SI) IN cgs  IN FLT Dimension IN MLT Dimension 

Absolute Viscosity 𝛍 N.s/m2 dyn.s/cm2 FL-2T ML-1T-1 

Density (ρ) kg/m3 g/cm3 ML-3 ML-3 

Kinematic Viscosity (ν) m2/s cm2/s L2T-1 L2T-1 

 
CGS unit for kinematic viscosity is the stokes (St), named after Sir George Gabriel Stokes. 

The kinematic viscosity of water is 1.004 × 10−6 m2/s at 20 °C. 

 

1.9.Density: 
The density ρ of a fluid is defined as its mass per unit volume.  

For water at standard pressure (760 mm of Hg) and 4 degree Celsius of temperature, density is 1000 kg/m3. 

 

1.10. Specific Volume: 
The specific volume is the reciprocal of the density, It is the volume occupied by unit mass of the fluid. 

vs = 1/ ρ 

Unit is m3/kg. 

 

1.11. Specific Weight:  
The Specific weight γ of the fluid is its weight per unit volume. It changes with locations, depending on 

gravity.  

γ= ρg 

The unit of specific gravity is N/m3. The specific weight of water is generally taken as 9810 N/m3 OR 9.81 

KN/m3 

 

1.12. Specific Gravity (S of G) 
The specific gravity of substance is the ratio of its weight to the weight of an equal volume of water at 

standard condition. 

𝐺 𝑜𝑟 𝑆 = (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 

 weight of an equal volume of water
) at standard condition.  

𝐺 𝑜𝑟 𝑆 = (
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 

 density of water
) 

𝐺 𝑜𝑟 𝑆 = (
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 

specific weight of water
) 

 

Specific gravity is the dimensionless quantity. 
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4.1.2. Pressure and Pascal's law 

1.13. Fluid Statics 
Considering Newton’s second law, that is, d(mv)/dt = F. 

Static is the case where d(mv)/dt = 0.  

This can be achieved when either the fluid is at rest or velocity is constant. 

There will be no relative motion of adjacent fluid layers, and consequently the shear stresses are zero 

Therefore, only normal or pressure forces are considered acting on the fluid surfaces. 

 

1.14. Fluid Pressure at a Point 
Pressure or intensity of pressure may be defined as the force exerted on a unit area. If F represents the total 

force uniformly distributed over the area A, the pressure at any point in p = F/A. 

Magnitude of pressure at any point, 𝑝 =
𝑑𝐹

𝑑𝐴
 

Unit of Pressure is N/m2 (OR Pa) in SI units. 

In metric gravitational units it is expressed in kg(f)/cm2 of kg(f)/m2 

 

 
Figure 3 Concept of Pressure 

1.15. Variation of pressure in a fluid 
𝑝 = 𝑝𝑎 + 𝛾ℎ 

Where pa is atmospheric pressure, Since the atmospheric pressure at a place is constant, at any point in a 

static mass of liquid, often only the pressure in excess of the atmospheric pressure is considered, 

So,  
𝑝 = 𝛾ℎ 

1.16. Pressure Head 
The vertical height of the free surface above any point in a liquid at rest is known as pressure head. 

ℎ =  
𝑝

𝛾
 

1.17. Pascal Law 
The pressure at any point in a fluid at rest has same magnitude in all directions. 

 

 

h 

Z0 
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1.18. Atmospheric, Absolute and Gage/Vacuum Pressure 
 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝐺𝑎𝑔𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑉𝑎𝑐𝑢𝑢𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 
 

Atmospheric Pressure = 10.1043 *104 N/m2 OR 1.03 kg(f)/cm2 OR 10.3 m of water OR 76 cm of 

Mercury. 

 
1.19. Measurement of Pressure: 

1. Manometers  

2. Mechanical Gages 

Manometers are those pressure measuring devices which are based on the principle of balancing column of 

liquid (which pressure is to be found) by the same or another column of liquid. 

 Simple Manometers 

 Piezometer 

 U tube Manometer 

 Single Column Manometer 

Simple manometer consists of a glass tube having one of its ends connected to the gage point where pressure 

is to be measured and the other remains open to atmosphere. 

 

 Differential Manometers 

 Two Piezometer Manometer 

 Inverted U tube Manometer  

 U tube differential Manometer 

 Micromanometer 

For measuring difference of pressure between any two points in a pipeline or in two pipes or containers. 
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Micromanometer is used to measure very small pressure differences, or for the measurement of pressure 

differences with very high precision.  

 

Some Important Points 

 The manomeric liquid should have high density and low vapor pressure. 

 A simple U tube manometer can measure both negative and positive pressures. 

 

 

 

 

1.20. Forces on Plane Areas: 
 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐹𝑜𝑟𝑐𝑒 (𝑃)  = 𝛾𝐴𝑋̅ 

Where, 

 

𝛾 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 

𝐴 = 𝑃𝑙𝑎𝑛𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑖𝑛 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  
𝑋̅ = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝐺 𝑓𝑟𝑜𝑚 𝑓𝑙𝑢𝑖𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

ℎ̅ = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝑃 𝑓𝑟𝑜𝑚 𝑓𝑙𝑢𝑖𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

 
Figure 4 Hydrostatic Force on Submerged Body 

1.21. Center of Pressure 
The line of action of resultant force has its piercing point in the surface at a point called center of pressure. 

ℎ̅ = 𝑋̅ +
𝐼𝐺 ∗ 𝑠𝑖𝑛2𝜃

𝐴𝑋̅
 

 

X 
𝑋̅ 

ℎ̅ 
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1.22. Buoyancy 

1.23. Buoyant Force  
The resultant force exerted on a body by a static fluid in which it is submerged or floating. 

The buoyant force always acts vertically upward, there can be no horizontal component of the resultant 

because the projection of the submerged body or submerged portion of the floating body on the vertical 

plane is always zero. 

The buoyant force on ta submerged body is the difference between the vertical component of pressure force 

on its underside and the vertical component of pressure on its upper side.  

 

1.24. Archimedes’ Principle: 
When a body is immersed in a fluid either wholly or partially, it is buoyed or lifted up by a force which is 

equal to the weight of the fluid displaced by the body. 
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Buoyant Force (FB) = 𝛾1 ∗ 𝑉1 + 𝛾2 ∗ 𝑉2 

 
Buoyant Force (FB) = Weight  

 

 

A body floating in a static liquid has vertical stability. A small upward displacement decreases the volume 

of liquid displaced, resulting in an unbalanced downward force, which tends to return the body to its original 

position. 

A body has linear stability when a small liner displacement is any direction sets up restoring forces tending 

to return it to its original position. It has rotational stability when a restoring couple is set up by any small 

angular displacement. 

 

1.25. Metacenter  
It is the point of intersection between an imaginary line drawn vertically through the center of buoyancy of 

a floating vessel and a corresponding line through the new center of buoyancy when the vessel is tilted. 

Fluid 1 

Specific weight 𝛾1 

 

Fluid 2 

Specific weight 𝛾2 

 

Volume 𝑉2 

 

Volume 𝑉1 

 

Floated Part 

Submerged Part 
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Figure 5 Metacenter 

M- Metacenter 

G- Center of Gravity  

B- Center of Buoyancy  

 

 
Figure 6 Types of Equilibrium 

 

A completely submerged object is rotationally stable only when its center of gravity is below center of. 

When the object is rotated counterclockwise, the buoyant force and weight produce a couple in the 

clockwise direction. 

A floating object with center of gravity below center of buoyancy floats in stable equilibrium. Certain 

floating objects however floats in stable equilibrium when their CG is above center of buoyancy.  

𝐵𝑀̅̅̅̅ ̅ > 𝐵𝐺̅̅ ̅̅   𝑆𝑇𝐴𝐵𝐿𝐸 𝐸𝑄𝑈𝐼𝐿𝐼𝐵𝑅𝐼𝑈𝑀  

𝐵𝑀̅̅̅̅ ̅ < 𝐵𝐺̅̅ ̅̅   𝑈𝑁𝑆𝑇𝐴𝐵𝐿𝐸 𝐸𝑄𝑈𝐼𝐿𝐼𝐵𝑅𝐼𝑈𝑀  

𝐵𝑀̅̅̅̅ ̅ = 𝐵𝐺̅̅ ̅̅   𝑁𝐸𝑈𝑇𝑅𝐴𝐿 𝐸𝑄𝑈𝐼𝐿𝐼𝐵𝑅𝐼𝑈𝑀  

𝐺𝑀̅̅̅̅̅ = ±(𝐵𝑀̅̅̅̅ ̅ − 𝐵𝐺̅̅ ̅̅ ) = ±(
𝐼

𝑉
− 𝐵𝐺̅̅ ̅̅ ) 

I is Moment of inertia of cross sectional area at the liquid surface about longitudinal axis. 

V is Volume of the liquid displaced. 

 

 

 

 

STABLE UNSTABLE 

NEUTRAL 
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4.2. Hydro-Kinematics and Hydro-Dynamics 
 

4.2.1. Energy of flowing liquid: elevation energy, Kinetic energy, potential 

energy, internal energy 

 
2.1. Fluid Kinematics 

2.2. Kinematics 
The nature of flow of a real fluid is very complex. The science, which deals with the geometry of motion 

of fluids without reference to the forces causing the motion, is kinematics. 

 

2.3. Kinetics 

Science, which deals with the action of the forces in producing or changing motion of fluids, is 

known as Kinetics. 

 

2.4. Lagrangian Approach of Fluid Motion  
In this method any individual fluid particle is selected, which is pursued throughout its course of motion 

and the observation is made about behavior of this particle during its course of motion through space. 

 

2.5. Eulerian Approach of Fluid Motion 
In this method, any point in the space occupied by the fluid is selected and observation is made of whatever 

changes of velocity, density and pressure, which take place at that point. 

Eulerian Method is commonly adopted. 

 

2.6. Velocity: 

In case of solid, it is generally sufficient to measure the velocity of the body as a whole, but in case 

of fluids, the motion of fluid may be quite different at different points of observation. Therefore 

the velocity V at any point of fluid mass is expressed as the ratio between the displacement of a 

fluid element along its path and the corresponding increment of time as the later approaches zero. 

𝑉 = lim
𝑑𝑡→0

𝑑𝑠

𝑑𝑡
 

As velocity is the vector quantity, It has magnitude as well as direction. Therefore the velocity V 

at any point in the fluid can be resolved into three components u, v and w along three mutually 

perpendicular directions s, y and z.  

𝑢 = lim
𝑑𝑡→0

𝑑𝑥

𝑑𝑡
 

𝑣 = lim
𝑑𝑡→0

𝑑𝑦

𝑑𝑡
 

𝑤 = lim
𝑑𝑡→0

𝑑𝑧

𝑑𝑡
 

 

2.7. Types of Fluid flow:  

2.7.1. Steady and Unsteady flow. 

Fluid flow is said to be steady if at any point in the flowing fluid various characteristics such as velocity, 

pressure, density, temperature etc. which describe the behavior of the fluid motion, do not change with 

time. 

Fluid flow characteristics remains independent of time. 
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𝜕𝑢

𝜕𝑡
= 0,    

𝜕𝑣

𝜕𝑡
= 0,    

𝜕𝑤

𝜕𝑡
= 0 

 
𝜕𝑝

𝜕𝑡
= 0 

Fluid flow is said to be unsteady if at any point in the flowing fluid any one or all which describe the 

behavior of the fluid motion, change with time. 
𝜕𝑉

𝜕𝑡
≠ 0,     

𝜕𝑝

𝜕𝑡
≠ 0 

Steady flow is simpler to analyze than unsteady flow. Moreover, most of the practical problems in 

engineering involve only steady flow conditions. 
 

2.7.2. Uniform and Non-Uniform Flow  

When the velocity of flow of fluid does not change, both in magnitude and direction, from point to point in 

the flowing fluid, for any given instant of time, the flow is said to be uniform. 
𝜕𝑉

𝜕𝑠
= 0 

Ex: Flow of liquids under pressure through long pipelines of constant diameter is uniform. 

If the velocity of flow of fluid changes from point to point in the flowing fluid at any instant, the flow is 

said to be non- uniform. 
𝜕𝑉

𝜕𝑠
≠ 0 

Ex: Flow of liquids under pressure through long pipelines of varying diameter is non-uniform. 

 
Flow of liquid through pipe of constant diameter at constant rate - Steady - uniform 

Flow of liquid through pipe of constant diameter at either increasing or decreasing rate – Unsteady - uniform 

Flow of liquid through a tapering pipe at a constant rate – Steady –non- uniform  

Flow through a tapering pipe at either increasing or decreasing rate – Unsteady-non-uniform 

 

2.7.3. One dimensional, two-dimensional and Three-dimensional Flows: 

The various characteristics of flowing fluid such as velocity, pressure, density, temperature etc.; are in 

general the functions of space and time, i.e. f(x,y,z,t).  Flow is three-dimensional. 

 

When various characteristics of flowing fluid are the function of only any two of the three coordinate 

directions, and time, Flow is two-dimensional.  

When various characteristics of flowing fluid are the function of only any one of the three coordinate 

directions, and time, Flow is one-dimensional.  

 

Types of Flow Unsteady Steady 

3D Flow  V = f(x,y,z,t) V = f(x,y,z) 

2D Flow V = f(x,y,t) OR f(x,z,t) OR 

f(y,z,t) 

V = f(x,y) OR f(x,z) OR f(y,z) 

1D Flow V = f(x,t) OR f(y,t) OR f(z,t) V = f(x) OR f(y) OR f(z) 

 

2.7.4. Rotational and Irrotational Flow: 

A flow is said to be rotational if the fluid particles while moving in the direction of flow rotate about their 

mass centers. 

A flow is said to be irrotational if the fluid particles while moving in the direction of flow do not rotate 

about their mass centers.  



Prepared By: Madhu Khanal 

18 | P a g e  

2.7.5. Laminar and Turbulent Flow 

A flow is said to be laminar when the various fluid particles move in layers (or laminae) with one layer of 

fluid sliding smoothly over an adjacent layer. 

A fluid motion is said to be turbulent when the fluid particles move in an entirely haphazard and disorderly 

manner that results in a rapid and continuous mixing of the fluid leading to momentum transfer as flow 

occurs. 

 

2.8. Basic Principles of Fluid Flow 
Principle of conservation of mass: Mass can neither be created nor destroyed – Continuity Equation 

Principle of conservation of energy: Energy can neither be created nor destroyed – Energy Equation 

Principle of conservation of momentum: The impulse of the resultant force, or the product of the force and 

time increment during which it acts, is equal to the change of momentum of body. – Momentum Equation. 

 

2.9. Continuity Equation: 
It is mathematical statement of the principle of conservation of mass. 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞 

Where A is area, Q is discharge, q is net lateral flow 

This equation is for unsteady flow  

For steady flow, 
𝜕𝐴

𝜕𝑡
 term of the equation becomes zero  

So, 
𝜕𝑄

𝜕𝑥
= 𝑞 

If there is no lateral flow, then q= 0 

So, 
𝜕𝑄

𝜕𝑥
= 0 Gives Q= Constant OR A*V = Constant.  

A1V1 = A2V2 = A3V3 =……………..=Constant 

 

2.10. Energy Equation: 
A fluid in motion is subjected to several forces which results in the variation of the acceleration and the 

energies involved in the flow phenomenon of the fluid. As such in the study of the fluid motion the forces 

and energy that are involved in the flow are required to be considered. This aspect of fluid motion is known 

as dynamics of fluid flow.  

Forces acting on a fluid mass  

Body or Volume forces  

Proportional to volume – Weight, Centrifugal Force, Magnetic Force, Electromotive Force etc. 

Surface forces  

Proportional to surface area – Pressure Force, Shear Force, Force of Compressibility, Force due to 

turbulence etc. 

Line forces  

Proportional to length – Surface Tension. 

∑F = Ma 

2.11. Bernoulli Equation: 
Is applicable for steady irroatational flow for incompressible fluids; 

𝑝

𝛾
+

𝑣2

2𝑔
+ 𝑧 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 
𝑝

𝛾
 𝑖𝑠 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ℎ𝑒𝑎𝑑 𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 ℎ𝑒𝑎𝑑 

𝑣2

2𝑔
 𝑖𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ℎ𝑒𝑎𝑑 𝑜𝑟 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 ℎ𝑒𝑎𝑑 
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z is potential head or datum head. 

The sum of 
𝑝

𝛾
 and z is known as piezometric head. 

For flow of real fluid since there is always some energy of the flowing fluid converted into heat due to 

viscous and turbulent shear and consequently there is a certain amount of energy loss.  

(
𝑝

𝛾
)1 + (

𝑣2

2𝑔
)1 + 𝑧1 = (

𝑝

𝛾
)

2

+ (
𝑣2

2𝑔
)2 + 𝑧2 + ℎ𝐿  

 

ℎ𝐿  𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

 
Application of Bernoulli equation 

a) VENTURI METER 

b) ORIFICE METER 
 

2.12. Venturi Meter 
The venturimeter is used to measure the rate of flow of a fluid flowing through the pipes. 

 
Figure 7 Venturimeter 

Theoretical Discharge: 

 
Actual Discharge:  

 
  

2.13. Orifice Meter : 
Is a device used for measuring the rate of flow of a fluid flowing through a pipe. 

• It is a cheaper device as compared to venturimeter. This also work on the same principle as that of 

venturimeter. 

The diameter of orifice is generally 0.5 times the diameter of the pipe (D), although it may vary from 0.4 

to 0.8 times the pipe diameter. 

The coefficient of discharge of the orifice meter is much smaller than that of a venturimeter. 
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Figure 8 Orificemeter 

 

 

 
2.14. Hydraulic gradient line (H.G.L): 

It is defined as the line which gives the sum of pressure head (
𝑝

𝛾
) and datum head (z) of a 

flowing fluid in pipe with respect to some reference or it is line which is obtained by joining the 

top of all vertical ordinates, showing the pressure head (
𝑝

𝛾
) of a flowing fluid in a pipe from the 

centre of the pipe. The line so obtain is called the H.G.L.  
 

2.15. Total energy loss (TEL or EGL) 
It is known that the total head (which is also total energy per unit weight) with respect to any 

arbitrary datum, is the sum of the elevation (potential) head, pressure head and velocity head. 
 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 =  
𝑝

𝛾
+

𝑣2

2𝑔
+ 𝑧 

A1 is Area of section 1 

A0 is Area of Opening 

Cc is Coefficient of Contraction  

Cd is Coefficient of discharge 

Cv is Coefficient of velocity 

Cd = Cc * Cv 
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Figure 9 TEL and HGL 
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4.3. Measurement of Discharge 

4.3.1. Weirs and notches 

 

3.1. Weir and Notches: 

3.2. Weir :  
A concrete or masonry structure built across rivers in order to raise the level of water on the u/s side to 

allow the excess water to flow over its entire length to d/s side. 

Similar to small dam constructed across river but in dam excess water flows d/s through small portion called 

spillway, in weir water flows in entire length.  

Nappe is sheet of water flowing through weir or notch. 

 

3.3. Notches: 

Opening provided in side of tank (or vessel) such that the liquid surface in the tank is below the top edge 

of the opening. 

Notches are used to measure rate of flow of liquid from a tank or in channel. 

Notches  Weir Weir According to shape 

of Crest 

Weir According to discharging 

Behavior 

Rectangular Rectangular Sharp edge weir Freely Discharging 

Triangular Triangular Narrow Crested Submerged 

Trapezoidal  Trapezoidal  Broad Crested  

Parabolic  Ogee Shaped  

Stepped    

  

4.3.2. Discharge formulas 

3.4. Rectangular Weir:  

 
Figure 10 Rectangular Notch and Weir 

 

Discharge Formula: 

𝑄 =
2

3
𝐶𝑑√2𝑔 𝐿𝐻3/2 – Cd is coefficient of discharge, L is length & H is head over crest  

Considering End Contraction: 

𝑄 =
2

3
𝐶𝑑√2𝑔 ∗ (𝐿 − 0.1𝑛𝐻)𝐻3/2 – Where n is number of end contraction. 

Considering Approach Velocity 
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𝑄 =
2

3
𝐶𝑑√2𝑔 ∗ (𝐿)[(𝐻 + ℎ𝑎)

3

2 − ℎ𝑎

3

2 ] – Where ha is velocity head = 
𝑣𝑎

2

2𝑔
 

Considering Approach Velocity and end contraction both 

𝑄 =
2

3
𝐶𝑑√2𝑔 ∗ (𝐿 − 0.1𝑛𝐻)[(𝐻 + ℎ𝑎)

3

2 − ℎ𝑎

3

2 ] 

 

3.5. V notch Notch:  

 
Figure 11 Triangular Notch 

Discharge Formula 

𝑄 =
8

15
𝐶𝑑√2𝑔 𝑡𝑎𝑛

𝜃

2
𝐻5/2 – Cd is coefficient of discharge 

Considering Approach Velocity 

𝑄 =
8

15
𝐶𝑑√2𝑔 𝑡𝑎𝑛

𝜃

2
[(𝐻 + ℎ𝑎)

5

2 − ℎ𝑎

5

2 ] – Where ha is velocity head = 
𝑣𝑎

2

2𝑔
 

 

3.6. Trapezoidal Notch: 

 
Figure 12 Trapazoidal Notch 

Discharge Formula 

𝑄 =
2

3
𝐶𝑑1√2𝑔 𝐿𝐻3/2 +

8

15
𝐶𝑑2√2𝑔 𝑡𝑎𝑛

𝜃

2
𝐻5/2 

If Cd1 = Cd2 = Cd 

𝑄 = 𝐶𝑑√2𝑔 𝐻
3
2 (

2

3
𝐿 +

8

15
 𝐻 𝑡𝑎𝑛

𝜃

2
 ) 
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3.7. Cippoletti Notch  
𝜃

2
= 14 

Special condition of trapezoidal notch where side slope is kept, 1H:4V 

𝑡𝑎𝑛
𝜃

2
=

1

4
 

𝑄1 =
2

3
𝐶𝑑√2𝑔 ∗ (𝐿 − 0.1𝑛𝐻)𝐻3/2 

𝑄2 =
8

15
𝐶𝑑√2𝑔 𝑡𝑎𝑛

𝜃

2
𝐻5/2 

𝑄 = 𝑄1 + 𝑄2 

𝑄 =
2

3
𝐶𝑑√2𝑔 𝐿𝐻3/2, 𝐶𝑑 = 0.632 

𝑄 = 1.86 𝐿𝐻3/2 
 

3.8. Submerged Weir  

 
Figure 13 Submerged and Unsubmerged Weir 

 

If d/s water table is below crest level weir is unsubmerged or free flowing weir 

If d/s water table is above crest level weir is submerged of Drowned weir 

 

𝑄1 =
2

3
𝐶𝑑1√2𝑔 𝐿(𝐻1 − 𝐻2)3/2 

𝑄2 = 𝐶𝑑2√2𝑔(𝐻1 − 𝐻2) 𝐿𝐻2 

𝑄 = 𝑄1 + 𝑄2 
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4.4. Flows: Characteristics of pipe flow and open channel flow 
 

4.4.1. Pipe Flow: 
4.1. Reynolds Color Dye Experiment: 

 
Figure 14 Reynolds Experiment 

In this experiment, a horizontal pipe is immersed in a tank filled with water. Just outside the tank the pipe 

is bended downward in order to provide a sufficient velocity to the flow for the various experiments. For 

this reason, the tank is placed on an elevated platform, since the water is discharged at the level of the floor. 

At the bottom, a valve connected to the free atmosphere controls the water flow in order to generate the 

wanted pressure gradients along the horizontal section of the pipe. The valve is regulated by a long lever 

operated by a technician from the elevated platform. Pipes of different sections are used to see the 

dependence of the phenomenon on the radius of the pipe and the viscosity of the water is modified by 

changing its temperature. Accurate readings of the water level permit to measure the flow rate in the pipe. 

The intake of the pipe is fitted with a trumpet mouthpiece, in order to avoid the formation of vortices along 

its edges. The regimes of the flow are made visible by introducing a colored tracer, able to provide an image 

of the velocity field. When the flow is laminar, the tracer appears as a straight colored line. As soon as the 

regime becomes turbulent, the tracer spreads over the whole cross-section of the pipe, so that the fluid 

changes its color everywhere. 

 

4.2. Reynolds Number (Re)  

It is the ratio of Inertia force to viscous force. 

𝑅𝑒 =  
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
=

𝐹𝑖

𝐹𝑣
 

𝑅𝑒 =
𝜌𝑉𝐿

𝜇
 

 

𝜌 𝑎𝑛𝑑 𝜇 are respectively the mass density and viscosity of the flowing fluid, V is the characteristic velocity 

of flow and L is the characteristic linear dimension. In the case of flow through pipes the characteristic 

linear dimension L is taken as diameter D of the pipe and characteristic velocity is taken as average velocity 

v.  
𝜇

𝜌
= 𝜗, kinematic viscosity of the flowing fluid. 

Reynolds number is therefore a very useful parameter in predicting whether the flow is laminar or turbulent. 
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Flow Reynolds Number 

Pipe flow Re<2000 - Laminar flow 

Re>4000 - Turbulent flow 

Re between 2000 and 4000 – Transition 

Flow between parallel plates Re<1000 – Laminar flow 

Open channel flow Re<500 – Laminar flow 

Flow around sphere Re<1 – Laminar flow 

 

4.3. Laws of fluid friction  

4.4. Laminar flow: 
In laminar flow the fluid particles move along parallel path in layers or laminae., such that the paths of the 

individual fluid particles do not cross those of the neighboring particles. It occurs at low velocity so that 

forces due to viscosity predominate over the inertial forces.  

 
Figure 15 Motion of Cylindrical Fluid Element within a Pipe 

Differential Equation of Laminar flow is; 

𝜇
𝛿2𝑣

𝛿𝑦2
=

𝜕𝑝

𝜕𝑥
 

This equation is valid for steady uniform laminar flow. 

 Shear stress in laminar flow varies linearly along the radius of pipe. At center, shear stress is zero, 

and at the wall of the pipe, shear stress is maximum. 

𝜏 = −
𝜕𝑝

𝜕𝑥

𝑟

2
  

 

 In laminar flow through circular pipes, velocity of flow varies parabolically. The maximum 

magnitude of velocity vmax occurs at the axis of the pipe and has magnitude of , 

𝑣𝑚𝑎𝑥 =
1

4𝜇
(−

𝜕𝑝

𝜕𝑥
)𝑅2  

 

Velocity distribution: 

𝑣 = 𝑣𝑚𝑎𝑥 [1 − (
𝑟

𝑅
)

2
]  
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Frictional Resistance in a laminar flow is  

Hagen – Poiseuille Equitation, 

Head Loss in Laminar Pipe flow, ℎ𝑓 =
32𝜇𝑣𝐿

𝛾𝐷2 =  
128𝜇𝑄𝐿

𝜋𝛾𝐷4  

 

i) Proportional to the velocity of flow. 

ii) Independent of pressure. 

iii) Proportional to the area of surface in contact. 

iv) Independent of nature of the surface in contact. 

v) Greatly affected by the variation of the temperature of the flowing fluid. 

 

4.5. Turbulent Flow 
Mostly the flow in pipes is turbulent. Velocity distribution in turbulent flow is relatively uniform. 

In the case of turbulent flow the velocity fluctuations influence the mean motion in such a way that an 

additional shear resistance is caused.  

Frictional Resistance in a turbulent flow is  

Head Loss in Laminar Pipe flow, ℎ𝑓 =
𝑓𝐿𝑣2

2𝑔𝐷
=  

8𝑓𝐿𝑄2

𝜋2𝑔𝐷5; This equation is known as Darcy Weisbach equation 

Here, f is friction factor, which is a dimensionless quantity. 

i) Proportional to the (velocity) n, where the index n varies from 1.72 to 2.0. 

ii) Independent of pressure. 

iii) Proportional to the density of flowing fluid. 

iv) Proportional to area of surface in contact. 

v) Dependent of nature of the surface in contact. 

vi) Slightly affected by the variation of the temperature of the flowing fluid. 

 

4.6. Hydrodynamically rough and smooth boundary:  
In general a boundary with irregularities of large average height k, on its surface is considered to be a 

rough and the one with smaller k values is considered as smooth boundary. However for proper 

classification of smooth and rough boundaries, the flow and fluid characteristics are required to be 

considered in addition to the boundary characteristics.  

 
Figure 16 Smooth and rough pipe boundary 
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𝑘

𝛿 ,
=

𝑣∗𝑘

𝜗

1

11.6
 

𝑣∗ = 𝑠ℎ𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  √(
𝜏0

𝜌
) 

𝜏0 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑒𝑠𝑠 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  
𝛿 , = 𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑛𝑎𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝜗 = 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝑘 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 
Smooth:  

𝑘

𝛿 ,
≤ 0.25 𝑂𝑅

𝑣∗𝑘

𝜗
≤ 3 

Rough  
𝑘

𝛿 ,
≥ 6 𝑂𝑅

𝑣∗𝑘

𝜗
≥ 70 

Transitional Flow  

 

3 <
𝑣∗𝑘

𝜗
< 70 𝑂𝑅 0.25 <

𝑘

𝛿 ,
< 6.0  

Velocity distribution for both smooth and rough boundary, 
𝑣𝑚𝑎𝑥 − 𝑉

𝑉∗
= 3.75 

4.7. Head Loss 
Major  Minor 

ℎ𝑓 =
𝑓𝐿𝑣2

2𝑔𝐷
 

Due to Sudden 

Enlargement ℎ𝐿 =
(𝑣1 − 𝑣2)2

2𝑔
 

 
 Due to Sudden 

Contraction  ℎ𝐿 = 0.5
(𝑣)2

2𝑔
 

 
 Entrance to pipe 

from reservoir   ℎ𝐿 = 0.5
(𝑣)2

2𝑔
 

S 

 Exit from pipe to 

reservoir   ℎ𝐿 =
(𝑣)2

2𝑔
 

 
 Bend/ Tee/Valve etc  

ℎ𝐿 = 𝑘
(𝑣)2

2𝑔
 

K is the cofficient.  
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Figure 17 TEL and HGL 

4.8. Pipe in Series: 
Pipes are said to be in series if they are connected end to end (in continuation with each other) so that the 

fluid flows in a continuous line without any branching. The volume rate of flow through the pipes in 

series is the same throughout. 

 
Figure 18 Series Connection 

If  hf1, hf2, hf3 be the losses of head in the individual pipes the total loss of head hf is given by  

 

ℎ𝑓 =
8𝑓𝐿𝑄2

𝜋2𝑔𝐷5
= ℎ𝑓1 + ℎ𝑓2 + ℎ𝑓3 =  

8𝑓1𝐿1𝑄2

𝜋2𝑔𝐷1
5 +

8𝑓2𝐿2𝑄2

𝜋2𝑔𝐷2
5 +

8𝑓3𝐿3𝑄2

𝜋2𝑔𝐷3
5 + ⋯ 

𝑓𝐿

𝐷5
=  

𝑓1𝐿1

𝐷1
5 +

𝑓2𝐿2

𝐷2
5 +

𝑓3𝐿3

𝐷3
5 + ⋯ 

 

 

Equivalent Pipe Corresponding to a Given Set of Pipes in Series: 
Let d1, d2, d3 be the diameters, and l1, l2, l3 be the lengths of the various pipes in a series connection. Let Q 

be the discharge. Let hf be the total loss of head. 

Let d be the diameter of an equivalent pipe of length l to replace the compound pipe to pass the same 

discharge at the same loss of head. 

 If  

𝑓 =  𝑓1 = 𝑓2 = 𝑓3 = ⋯ is assumed , then 

 
𝐿

𝐷5
=  

𝐿1

𝐷1
5 +

𝐿2

𝐷2
5 +

𝐿3

𝐷3
5 + ⋯ 

 

This formula is known as Dupits Formula. 

4.9. Pipes Connected in Parallel: 
Pipes are said to be in parallel when they are so connected that the flow from a pipe branches or divides 

into two or more separate pipes and then reunite into a single pipe. 
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Figure 19 Parallel Connection 

In this arrangement the total discharge Q divides into components Q1 and Q2 along the branch pipes 

such that – 

Q = Q1 + Q2 

In this arrangement, the loss of head from section 1-1 to section 2-2 is equal to the loss of head in any 

one of the branch pipes. 

hf = hf1 = hf2 

8𝑓1𝐿1𝑄1
2

𝜋2𝑔𝐷1
5 =

8𝑓2𝐿2𝑄2
2

𝜋2𝑔𝐷2
5  

𝑓1𝐿1𝑄1
2

𝐷1
5 =

𝑓2𝐿2𝑄2
2

𝐷2
5  

If 𝑓1 = 𝑓2 is assumed, 

 

 

𝐿1𝑄1
2

𝐷1
5 =

𝐿2𝑄2
2

𝐷2
5  

𝑄1
2

𝑄2
2 =

𝐿2𝐷1
5

𝐿1𝐷2
5 

 
 

4.10. Siphon: 
Siphon is a long bent which is used to carry water from a reservoir at a higher elevation to another reservoir 

at a lower elevationwhen the two reservoirs are seperated by a hill of high level ground in between as shown 

in figure. 
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Figure 20 SIPHON 

4.11. Unsteady Flow In Pipes: 
When the water flowing in a long pipe is suddenly brought to rest by closing the valve or by any similar 

cause, there will be a sudden rise in pressure due to the momentum of the moving water being destroyed. 

This causes a wave of high pressure to be transmitted along the pipe which creates noise known as knocking. 

This phenomenon of sudden rise in pressure in the pipe is known as water hammer. The rise in pressure in 

some cases may be so large that the pipe may even brust and therefore it is essential to take into account 

this rise in the design of the pipes. 

 

Allievi Formula for maximum pressure rise for instantenious closure of valve, 

ℎ =
𝑐𝑣

𝑔
 

Where c = pressure wave velocity & v = velocity of flow. 

𝑐 = √

𝑘
𝜌

(1 +
𝑘𝐷
𝑒𝐸)

 

Where, 

 K = Bulk Modulus of Water  

E = Young Modulus of Elasticity of Pipe material 

D = Diameter of Pipe 

e = Thickness of Pipe  

𝜌 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 
 

Water hammer is the case of unsteady flow.  
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4.4.2. Open Channel Flow :  
Flow of water takes place with a free surface which is subjected to atmoshpheric pressure.  

The HGL of Open channel flow is its water surface. 

 
Figure 21Open Channel Flow 

 

4.12. Properties of OCF vs Pipe Flow 
 

OCF PIPE FLOW 

 OCF must have a free surface. 

 A free surface is subject to atmospheric 

pressure 

 The driving force is mainly the 

component of gravity along the flow 

direction. 

 HGL is coincident with the free surface. 

 Flow area is determined by the geometry 

of the channel plus the level of free 

surface, which is likely to change along 

the flow direction and with as well as 

time. 

 The cross section may be of any from 

circular to irregular forms of natural 

streams, which may change along the 

flow direction and as well as with time. 

 Relative roughness changes with the level 

of free surface 

 The depth of flow, discharge and the 

slopes of channel bottom and of the free 

surface are interdependent. 

 

 No free surface in pipe flow 

 No direct atmospheric pressure, hydraulic 

pressure only. 

 The driving force is mainly the pressure 

force along the flow direction. 

 HGL is (usually) above the conduit ( In 

case of Siphon it is below center line) 

 Flow area is fixed by the pipe dimensions 

the cross section of a pipe is usually 

circular. 

 The cross section may be of any from 

circular to irregular forms of natural 

streams, which may change along the 

flow direction and as well as with time. 

 The relative roughness is a fixed quantity. 

 No such dependence. 

 

4.13. Geometrical Properties of Channel Section : 
y : Flow Depth. 

T : Top width. 

A : Wetted Area. 

P : Wetted Perimeter. 

R = A/P : Hydraulic Radius. 

D = A/T : Hydraulic Depth. 
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Z = A√𝑇 : Section Factor  

 
 

4.14. Shear Stress in Open channel flow  
𝜏 = 𝛾𝑅𝑆𝑜 

𝑆𝑜 = 𝑏𝑒𝑑 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑛𝑎𝑙 
4.15. Some velocity formula used in OCF  
Mannings Equation: 

𝑉 =  
1

𝑛
𝑅

2
3𝑠𝑜

1
2 

n is Mannings Constant  

 

Chezys Formula: 

𝑉 = 𝐶√𝑅𝑆𝑜 

C is Chezys Constant  

𝐶 =  
1

𝑛
𝑅

1
6 

Kutters Formula  

𝑣 =
23 +

0.00155
𝑆𝑜

+
1
𝑛

1 + (23 +
0.00155

𝑆𝑜
)

𝑛

√𝑅

∗ √𝑅𝑆 

Where n is kutter’s n  

4.16. Most Economical Section of Channels: 
A section of a channel is said to be most economical when the cost of construction of the channel is 

minimum. However, the cost of construction of a channel depends on excavation and the lining. To keep 

the cost down or minimum, the wetted perimeter, for a given discharge, should be minimum. This 

condition is utilized for determining the dimensions of economical sections of different forms of channels.  
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4.17. Most Economical Rectangular Channel:  
R= y/2 (Hydraulic radius is half the depth) 

 

4.18. Most Economical Trapezoidal Channel:   
R= y/2 (Hydraulic radius is half the depth) 

“A trapezoidal section channel is most economical if when a semi-circle is drawn with its center, O, on the 

water surface and radius equal to the depth of flow, D, the three sides of the channel are tangential to the 

semi-circle”. 

 

Best side slope is at 60o
 to the horizontal, i.e.; of all trapezoidal sections a half hexagon is most economical. 

However, because of constructional difficulties, it may not be practical to adopt the most economical side 

slopes. 

 

4.19. Most Economical Circular Channel: 

 
 

Condition for Maximum Discharge for Circular Section: 

If Chezys Formula is used: 

α = 154 Degree 

y = 0.95d 

If Mannings Formula is used: 

α = 151 Degree  

y = 0.94d 

Condition for Maximum Velocity for Circular Section: 

If Chezys or Mannings Formula is used: 

α = 128.75 Degree 

y = 0.81y  

 

4.20. Froud Number (F):  

The Froude number is defined as the ratio of gravitational forces to inertial forces. 

𝐹 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑜𝑟𝑐𝑒

𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝐹𝑜𝑟𝑐𝑒
=

𝑣

√𝑔𝐷
 

v is velocity of flow, D is hydraulic depth. 

  
Subcritical flow is deep, slow flow with a low energy state and has a Froude number less than one (F < 1). 

Critical flow occurs when the Froude number equals one (F=1); there is a perfect balance between the 

gravitational and inertial forces. 

Supercritical flow is shallow, fast flow with a high-energy state and has a Froude number greater than one 

(F>1). 
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4.21. Energy Principles in Open Channel Flow: 

 
Figure 22 TEL and HGL in OCF 

 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑍 + 𝑦 +
𝑣2

2𝑔
 

If the channel bed is taken as the datum (as shown), then the total energy per unit 

weight will be, 

𝐸𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 𝑦 +
𝑣2

2𝑔
= 𝑦 +

𝑄2

2𝑔𝐴2
 

This energy is known as specific energy, Es. Specific energy of a flowing liquid in a 

channel is defined as energy per unit weight of the liquid measured from the channel 

bed as datum. It is a very useful concept in the study of open channel flow. 
 

4.22. Specific Energy Curve: 

 
Figure 23 Specific Energy Curve 
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Critical Depth in Rectangular Canal Section (yc) 

𝑦𝑐 = √
𝑞2

𝑔

3

 

Where q = Q/B 

 

4.23. Hydraulic Jump:  

 
Figure 24 Hydraulic Jump 

Energy Dissipation in Hydraulic Jump (HJ)  

∆𝐸 =
(𝑦2 − 𝑦1)3

4𝑦1𝑦2
 

 

 

SOME USEFUL SITES 
 https://www.sanfoundry.com/1000-fluid-mechanics-questions-answers/  

https://www.indiabix.com/civil-engineering/hydraulics/ 

http://www.geekmcq.com/civil-engineering/hydraulicsfluid/ 
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SOME OBJECTIVE QUESTIONS 
1. Fluid is a substance that  

A. cannot be subjected to shear forces  
B. always expands until it fills any container  

C. has the same shear stress.at a point regardless of its motion  
D. cannot remain at rest under action of any shear force  

E. Flows. 

2. Fluid is a substance which offers no resistance to change of  

A. pressure  

B. flow  

C. shape  
D. volume  

E. Temperature.  

3.  Practical fluids  

A. are viscous  

B. possess surface tension  

C. are compressible  

D. possess all the above properties  

E. Possess none of the above properties.  

4. In a static fluid  

A. resistance to shear stress is small  

B. fluid pressure is zero  

C. linear deformation is small  
D. only normal stresses can exist  

E. Viscosity is nil. 

5. A fluid is said to be ideal, if it is  

A. incompressible  

B. inviscous  

C. viscous and incompressible  
D. inviscous and compressible  

E. inviscous and incompressible.  

6. If no resistance is encountered by displacement, such a substance is known as  

A. fluid  

B. water  

C. gas  
D. perfect solid  

E. Ideal fluid.  

7. Liquids  

A. cannot be compressed  

B. are not affected by change in pressure and temperature  

C. are not viscous  
D. None of the above.  

8. Which of the following is dimensionless  

A. specific weight  
B. specific volume  

C. specific speed  

D. specific gravity  
E. Specific viscosity.  

9. The normal stress in a fluid will be constant in all directions at a point only if  

A. it is incompressible  
B. it has uniform viscosity  

C. it has zero viscosity  

D. it is frictionless  
E. It is at rest.  

10. An object is a mass of 2 kg and weighs 19N on the spring balance. The value of gravity at this location, in m/s2 is  

A. 0.105 

B. 2 

C. 9.81 
D. 9.5 

E. 19 

F. None of above  

11. A pressure intensity of 109 Pa can be written as  

A. gPa 

B. Gpa 
C. kMPa 

D. 𝜇𝑃𝑎 
E. None of above 
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12. Viscosity has the dimensions  

A. FL-1T 
B. FL-1T-1 

C. FLT-2 

D. FL2T 
E. FLT2 

F. None 

13. Select the incorrect statement. Apparent Shear Force is  

A. Can never occur when the fluid is at rest. 

B. May occur owing cohesion when the liquid is at rest. 

C. Depends upon molecular interchange of momentum. 
D. Depend upon cohesive forces. 

E. Can never occur in a frictionless fluid regardless of its motion. 

14. 𝝁 = 𝟎. 𝟎𝟔
𝒌𝒈

𝒎𝒔
 and specific gravity =0.6, kinematic viscosity in stoke is  

A. 2.78 

B. 1.00 

C. 0.60 
D. 0.36 

E. None of these answer 

15. Choose the correct relationship  

A. specific gravity = gravity x density  

B. dynamic viscosity = kinematic viscosity x density  

C. gravity = specific gravity x density  
D. kinematic viscosity = dynamic viscosity x density  

E. Hydrostatic force = surface tension x gravity. 

16. If mercury in a barometer is replaced by water, the height of 3.75 cm of mercury will be following cm of water  

A. 51 cm  

B. 50 cm  

C. 52 cm  
D. 52.2 cm  

E. 51.7 cm. 

17. A one dimensional flow is one which  

A. is uniform flow 

B. is steady uniform flow  

C. takes place in straight lines  
D. involves zero transverse component of flow  

18. Specific weight of sea water is more that of pure water because it contains  

A. dissolved air  

B. dissolved salt  

C. suspended matter  

D. all of the above  
E. Heavy water. 

19. The buoyancy depends on  

A. mass of liquid displaced  

B. viscosity of the liquid  

C. pressure of the liquid displaced  
D. depth of immersion  

E. None of the above. 

20. Bernoulli equation deals with the law of conservation of  

A. mass  

B. momentum  

C. energy  
D. work  

E. Force. 

21. For pipes, turbulent flow occurs when Reynolds number is  
A. less than 2000  

B. between 2000 and 4000  

C. more than 4000  
D. less than 4000  

E. None of the above. 

22. Two pipe systems can be said to be equivalent, when the following quantities are same  

A. friction loss and flow  

B. length and diameter  

C. flow and length  
D. friction factor and diameter  

E. Velocity and diameter. 
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23. All the terms of energy in Bernoulli's equation have dimension of  

A. energy  
B. work  

C. mass  

D. length  
E. Time. 

24. According to Bernoulli's equation, for steady ideal fluid flow  

A. principle of conservation of mass holds  
B. velocity and pressure are inversely proportional  

C. total energy is constant throughout  

D. the energy is constant along a streamline but may vary across streamlines  
E. None of the above. 

25. Normal depth in open channel flow is the depth of flow corresponding to  

A. steady flow  
B. unsteady flow  

C. laminar flow  

D. uniform flow  
E. Critical flow. 

26.  A piece of metal of specific gravity 7 floats in mercury of specific gravity 13.6. What fraction of its volume is under mercury?  
A. 0.5  

B. 0.4  

C. 0.515  

D. 0.5  
E. None of the above. 

27. Flow occurring in a pipeline when a valve is being opened is 

A. steady  
B. unsteady  

C. laminar  
D. vortex  

E. Rotational. 

28. The flow in which the velocity vector is identical in magnitude and direction at every point, for any given instant, is known as 

A. one dimensional flow  

B. uniform flow  

C. steady flow  
D. turbulent flow  

E. Streamline flow. 

29. The flow in which conditions do not change with time at any point, is known as  

A. one dimensional flow  

B. uniform flow  

C. steady flow  
D. turbulent flow  

E. streamline flow 

30. The flow, which neglects changes in a transverse direction, is known as 

A. one dimensional flow  

B. uniform flow  

C. steady flow  
D. turbulent flow  

E. Streamline flow. 

31. In the case of steady flow of a fluid, the acceleration of any fluid particle is  

A. Constant  

B. variable  

C. zero  
D. zero under limiting conditions  

E. never zero 

32. For measuring flow by a venturimeter, it should be installed in  

A. vertical line  

B. horizontal line  

C. inclined line with flow downward  

D. inclined line with upward flow 

E. In any direction and in any location. 

33. In an immersed body, center of pressure is  

A. at the center of gravity  

B. above the center of gravity  

C. below be center of gravity  
D. could be above or below e.g. depending on density of body and liquid  

E. Unpredictable. 
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34. Differential monometer is used to measure  

A. Pressure in pipes, channels etc.  
B. atmospheric pressure  

C. very low pressure  

D. difference of pressure between two points  
E. velocity in pipes 

35. The center of gravity of the volume of the liquid displaced by an immersed body is called  

A. center of gravity  
B. center of pressure  

C. metacenter  

D. center of buoyancy  
E. Centroid. 

36. The line of action of the buoyant force acts through the centroid of the  

A. submerged body  
B. volume of the floating body  

C. volume of the fluid vertically above the body  

D. displaced volume of the fluid  
E. None of the above. 

37. The two important forces for a floating body are  

A. buoyancy, gravity  

B. buoyancy, pressure  

C. buoyancy, inertial  

D. inertial, gravity  
E. Gravity, pressure. 

38. According to the principle of buoyancy a body totally or partially immersed in a fluid will be lifted up by a force equal to  

A. the weight of the body  
B. more than the weight of the body  

C. less than the weight of the body  
D. weight of the fluid displaced by the body  

E. Weight of body plus the weight of the fluid displaced by the body. 

39. Metacenter is the point of intersection of  

A. vertical upward force through CG of body and center line of body  

B. buoyant force and the center line of body  

C. midpoint between CG and center of buoyancy  
D. all of the above  

E. None of the above. 

40. A body floats in stable equilibrium  

A. when its metacentric height is zero  

B. When the metacenter is above CG.  

C. when its CG is below its center of buoyancy  
D. metacenter has nothing to do with position of CG for determining stability  

E. None of the above 

41. The horizontal component of buoyant force is  

A. negligible  

B. same as buoyant force  

C. zero 

42. Which of the following instruments is used to measure flow on the application of Bernoulli's theorem  

A. Venturimeter  

B. Orifice plate  
C. nozzle  

D. pitot tube  

E. All of the above. 

43. Minor losses occur due to  

A. sudden enlargement in pipe 

B. sudden contraction in pipe 
C. bends in pipe 

D. all of the above 

44. The highest point of syphon is called as 

A. syphon top 

B. summit 

C. reservoir 
D. none of the above 

45. The friction factor in fluid flowing through pipe depends upon  

A. Reynold's number 
B. relative roughness of pipe surface 

C. Both a. and b. 

D. none of the above 
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46.  The increase of temperature results in  

A. increase in viscosity of gas  
B. increase in viscosity of liquid  

C. decrease in viscosity of gas  

D. decrease in viscosity of liquid  
E. (a) and (d) above. 

47. The difference between total head line and piezo-metric head line represents : 

A. the velocity head 

B. the pressure head 

C. the elevation of the bed of the channel 

D. the depth of flow 

48. Normally velocity at …… depth from free surface in the OCF is very close to mean velocity of flow 

A. 0.2 

B. 0.8 

C. 0.6 

D. Average of velocity at 0.2 depth and 0.8 depth 

E. Both C and D  

49. If layers of fluid have frictional force between them, then it is known as 

A. viscous 

B. non-viscous 
C. incompressible 

D. both a and b 

50. Cavitation is caused by  

A. high velocity  

B. high pressure  

C. weak material  
D. low pressure  

E. Low viscosity. 

 

Answer Key 

1 D 11 B 21 C 31 C 41 C 

2 C 12 F 22 A 32 E 42 E 

3 D 13 A 23 D 33 C 43 D 

4 D 14 B 24 D 34 D 44 B 

5 E 15 B 25 D 35 D 45 C 

6 E 16 A 26 C 36 D 46 E 

7 D 17 D 27 B 37 A 47 A 

8 D 18 D 28 B 38 D 48 E 

9 E 19 A 29 C 39 B 49 A 

10 D 20 C 30 A 40 B 50 D 

 

 
(Please feel free to contact at madhukhanal72@gmail.com for any suggestion or comment regarding this note. Your valuable suggestions will 

give this note a better shape) 
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15.10 MOMENTUM IN OPEN-CHANNEL FLOW-SPECIFIC FORCE
If V is the mean velocity of flow of discharge Q in a channel, the momentum of the flow passing a
channel section per unit time may be expressed by (wQV/g), where w is the specific weight of water.
According to Newton’s second law of motion the rate of change of momentum in the body of water
flowing in a channel is equal to the resultant of all the forces that are acting on the body. Thus
applying this principle to a channel of large bed slope, the following expression for the rate of change
of momentum in the body of water enclosed between sections 1 and 2 may be written

2 1( )
wQ

V V
g

− = P1 – P2 + W sin θ – Ff …(15.39)

where w, Q and V are previously defined with subscripts referring to sections 1 and 2; P1 and P2 are the
resultant pressures acting on the two sections; W is the weight of water enclosed between the sections;
θ is the angle of inclination of the channel bottom with the horizontal; and Ff is the total external force
of frictional resistance acting in the direction opposite to the flow along the surface of contact between
the water and the channel.

When the momentum equation is applied to a short horizontal reach of a prismatic channel, the
external force of friction and the component of the weight of water can be ignored. Thus with θ = 0 and
Ff = 0 Eq. 15.39 becomes

2 1( )
wQ

V V
g

− =  P1 – P2 …(15.40)

Assuming hydrostatic pressure distribution at sections 1 and 2

P1 = wA1 1z ; and P2 = wA2 2z

where A1, 1z and A2, 2z are cross-sectional area and the vertical depth of the centroid of the area below
the surface of flow at sections 1 and 2 respectively. Also V1 = (Q/A1) and V2 = (Q/A2), thus Eq. 15.40
may be written as

2

1

Q
gA

+ A1 1z =
2

2

Q
gA

+ A2 2z …(15.41)

The terms on both sides of Eq. 15.41 are analogous, hence Eq. 15.41 may be expressed for any
channel section by a general function

 F =
2Q

gA
+ A z …(15.42)

This function consists of two terms. The first term is the momentum of the flow passing through the
channel per unit time per unit weight of water, and the second term is the force per unit weight of
water. Since both these terms are force per unit weight of water, their sum is known as specific force. As
such Eq. 15.41 may be expressed as F1 = F2, which means that the specific forces of sections 1 and 2 are
equal, provided that external force of friction and the component of the weight of water in the channel
reach between the two sections can be ignored.

It is evident from Eq. 15.42 that for a given channel section and discharge Q the specific force
depends only on the depth of flow. Thus by plotting the depth of flow against the specific force for a
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given channel section and discharge, a specific force curve is obtained as shown in Fig. 15.10. Alike
specific energy curve this curve also has two limbs AC and BC. The limb AC approaches the horizontal
axis asymptotically towards right. The limb BC rises upward and extends indefinitely to the right. It
can be seen from the curve that for a given value of specific force there are two possible depths y1 and
y2. It has been shown in the next chapter that these two depths y1 and y2 constitute the initial and
sequent depths of a hydraulic jump. At point C on the curve the two depths become one and
corresponding to this depth the specific force is minimum.

For a given discharge the condition for minimum specific force can be obtained by differentiating
Eq. 15.42 with respect to y and then considering (dF/dy) = 0. Thus

dF
dy

=  – 
2

2
Q dA

dygA

⎛ ⎞
⎜ ⎟⎝ ⎠

+ 
( )d Az
dy

= 0

since Q is constant and both A and z are the functions of y. As shown in Fig.15.10 for a change dy in
the depth, the corresponding change d(A z ) in the moment of the cross-sectional area about the free
surface may be expressed as

2( )
( )

2
T dy

A z dy
⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

– (A z )=  d (A z )

T
dA T dy =   

z
C .G .

dy

y

y2

yc
y1

Channe l
section

F

P
P2

C

P1

B

A

F

y

Figure 15.10   Specific-force curve

Assuming (dy)2 ≈  0, the above expression becomes

d (A z ) = A(dy)

Substituting this value of d(A z ) the preceding equation becomes

dF
dy

= – 
2

2
Q dA

dygA

⎛ ⎞
⎜ ⎟⎝ ⎠

+
( )

0
A dy

dy
=
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Again since (dA/dy) = T, the above equation reduces to
2Q

g
=

3A
T

which is the condition for the critical state of flow as indicated earlier. It is thus seen that the depth of
flow at the minimum value of the specific force is equal to the critical depth.

Further solving Eq. 15.42 for Q, it may be expressed as

Q = ( )F Az gA− …(15.43)

In a given channel section for a given value of specific force F, the condition for maximum discharge
can be obtained by putting (dQ/dy) = 0. Thus differentiating Eq. 15.43 with respect to y

dQ
dy

=

( )
( )

2 ( )( )

dA d Az dA
g F A Az

dy dy dy

F Az gA

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

−
= 0

or F =
2A

T
+ A z

Substituting the value of F obtained above in Eq. 15.43 it may be simplified and rearranged as

2Q
g

=
3A

T

which is again the criterion for the critical state of flow as indicated earlier. Therefore it may be stated
that for a given specific force the discharge in a given channel section is maximum when the flow is in
the critical state.

15.11 CRITICAL FLOW AND ITS COMPUTATION
When the depth of flow of water over a certain reach of a given channel is equal to the critical depth yc,
the flow is described as critical flow or in critical state. As indicated by the critical flow criterion, Eq.
15.36, the critical depth for a given discharge Q is the depth yc corresponding to which the cross-
sectional area A and top width T of the channel section are such that the value of (A3/T) is given by the
following expression,

3

c

A
T

⎛ ⎞
⎜ ⎟⎝ ⎠

=
2Q

g

or
c

A
A

T

⎛ ⎞
⎜ ⎟⎝ ⎠

= Zc = 
Q
g

…(15.44)

Equation 15.44 indicates that the section factor for critical flow computation, Z[ = A /A T ] for a

channel section at the critical state of flow is equal to ( )Q/ g . For a prismatic channel the section

factor Z is a function of the depth of flow. Hence it is evident from Eq. 15.44 that in a prismatic channel
there is only one possible depth yc which makes the given discharge Q, in a channel to flow in critical
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16.1 INTRODUCTION
As explained in Chapter 15 the non-uniform or varied flow in a channel is the one in which depth of
flow changes from section to section along the length of the channel. It may be further classified as
gradually varied flow  (G.V.F.) and rapidly varied flow  (R.V.F.). The gradually varied flow is a steady non-
uniform flow in which the depth of flow varies gradually. Many cases of gradually varied flow are of
practical interest to engineers such as flow upstream of a weir or a dam, flow downstream of a sluice
gate, flow in channels with break in bottom slopes etc., wherein study of back water and the location
of hydraulic jump is of major importance. In a rapidly varied flow the depth of flow changes abruptly
over a comparatively short distance. Typical examples of rapidly varied flow are hydraulic jump and
hydraulic drop. In this chapter both the types of non-uniform flows have been discussed.

16.2 GRADUALLY VARIED FLOW
The problem of gradually varied flow is that of predicting overall flow pattern, or in other words
prediction of the water surface profile to be expected in a given channel with given steady discharge.
Such problems can be solved by writing the differential equation for the water surface profile and then
integrating it.

1. Dynamic Equation of Gradually Varied Flow. The dynamic equation for gradually varied flow
can be derived from the basic energy equation with the following assumptions:

(a) The uniform flow formulae (such as Manning’s or Chezy’s) may be used to evaluate the energy
slope of a gradually varied flow and the corresponding coefficients of roughness developed primarily
for uniform flow are applicable to the gradually varied flow also.

Thus, (Sf ) G.V.F. =  
2

2/3
Vn

R
⎛ ⎞
⎜ ⎟⎝ ⎠

 ...(Manning’s)

(Sf ) G.V.F. =
2V

C R
⎛ ⎞
⎜ ⎟⎝ ⎠

 ...(Chezy’s)

(b) The bottom slope of the channel is very small.
(c) The channel is prismatic.

Non-uniform Flow
in Channels

  Chapter 16
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(d) The energy correction factor α is unity.
(e) The pressure distribution in any vertical is hydrostatic.
(f) The roughness coefficient is independent of the depth of flow and it is constant throughout the

channel reach considered.
Considering a short reach of channel having gradually varied flow as shown in Fig. 16.1, the

energy equation at any section may be written as

H =
2

2
V

g
+ y + z

or H =
2

22
Q
gA

 + y + z since
Q

V
A

⎛ ⎞=⎜ ⎟⎝ ⎠

Energy line

Water surface

S f

C hanne l bo ttom
S0

x

Datum

V
g

2

2

Z

y

( /dx
dy

)

Figure 16.1  Gradually varied flow

Differentiating each term of the above equation with respect to x, where x is measured along the
channel bottom, the following differential equation can be obtained

dH
dx

=  
2

22
d Q

dx gA

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 + 
dy
dx

  + 
dz
dx

or
dH
dx

=
2

3

dyQ dA dz
dx dx dxgA

− + +

In the above differential equation, 
dH
dx

is the slope of the energy line and hence 
dH
dx

=  – Sf ;
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dz
dx

 is the slope of the channel bed and hence  
dz
dx

= –S0 (the negative signs for Sf and S0  indicate that

as x increases H and z decreases ;  and 
dy
dx

 is the slope of the water surface with respect to the channel

bottom. Further the term 
dA
dx

can be written as 
dA
dx

= 
dA
dy

×
dy
dx

= T 
dy
dx

,  since 
dA
dy

  is equal to the surface

width T.
The substitution of these terms in the above differential equation yields

– Sf = – 
2

3

dy dyQ T
dx dxgA

+  – S0

Solving for 
dy
dx

, the following differential equation for the water surface slope can be obtained,

dy
dx

= 0
2

31

fS S

Q T
gA

−

−
= 

0
21
fS S

Fr

−

−
...(16.1)

Since
2

3
Q T
gA

=  Fr 2

Equation 16.1 is the basic differential equation for the gradually varied flow. It may be observed

from Eq. 16.1 that when 
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0; S0 = Sf  and the water surface is parallel to channel bottom thus

representing a uniform flow as explained in Chapter 15. When 
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

is positive the water surface is

rising and when 
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

is negative the water surface is falling.

2. Alternative Derivation for Gradually Varied Flow Equation. Equation 16.1 can also be derived
by considering the total energy (or total head) at sections 1 and 2, dx apart along the bottom of the
channel. Thus

   z1 + y1 + 
2

1

2
V

g
= z2 + y2 + 

2
2

2
V

g
 + Sf (dx)

or  (z1 – z2) – Sf  (dx ) = (y2 – y1) + 
2
2

2
V

g
  –  

2
1

2
V

g
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or  S0(dx ) – Sf  (dx ) = dy + d 
2

2
V

g

⎛ ⎞
⎜ ⎟
⎝ ⎠

or  S0 – Sf =
2

2
dy d V
dx dx g

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

or S 0  – Sf =
dy d
dx dy

+
2

2
V

g

⎛ ⎞
⎜ ⎟
⎝ ⎠

dy
dx

or
dy
dx

=
0

2

1
2

fS S

d V
dy g

−

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

In the above equation the term 
d
dy

 
2

2
V

g

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the change in velocity head which may also be

expressed as

d
dy

2

2
V

g

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
d
dy

 
2

22
Q
gA

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=
2

3
Q dA

dygA

⎛ ⎞
⎜ ⎟
⎝ ⎠

  = – 
2

3
Q T
gA

Thus by substitution the value of  
2

2
d v

dy g

⎛ ⎞
⎜ ⎟⎝ ⎠

 in the above equation, it becomes

dy
dx

= 0
2

31

fS S

Q T
gA

−

−

which is same as Eq. 16.1 derived earlier.
Equation 16.1 may also be derived by adopting another approach which is based on the concept of

the specific energy as described below. For a given discharge Q flowing in a channel the specific
energy at a channel section may be expressed as

E = y +
2

22
Q
gA

Obviously E is function of the depth of flow. However, in uniform flow since the depth of flow
remains constant from section to section, (dE/dx) = 0. On the other hand in varied flow since the depth
of flow varies from section to section, the specific energy will also vary. Thus differentiating both the
sides of the above noted expression for E with respect to the direction of flow x, we have

dE
dx

=
dy
dx

 + 
2

3
2

2
Q dA

g dxA
⎛ ⎞
⎜ ⎟⎝ ⎠
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or
dE
dx

=
dy
dx

   – 
2

3

dyQ dA
dy dxgA

⎛ ⎞
×⎜ ⎟

⎝ ⎠

or
dE
dx

=
dy
dx

2

31
Q T
gA

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

The above expression represents the change of specific energy in a small reach dx of a channel
having the nonuniform flow. Further if S0 is the bottom slope of the channel then (S0 dx) is the work
done by gravity in a small reach dx. Similarly if Sf  is the slope of the energy line then (Sf dx) is the loss
of energy which is spent in overcoming the resistance in a small reach dx. Thus in a small reach dx of
the channel the net change of specific energy dE becomes

dE = (S0 dx –Sf  dx )

or
dE
dx

= S0 – Sf

By substituting this value of (dE/dx) and solving for (dy/dx)

dy
dx = 0

2

31

fS S

Q T
gA

−

−

which is again same as Eq. 16.1 derived earlier.
3. Dynamic Equation for G.V.F. in Wide Rectangular Channel. Equation 16.1 can be expressed in

simplified form for a wide rectangular channel as indicated below.
For a wide rectangular channel section of width B the hydraulic radius can be replaced by the

depth of flow y since

R =
2

By By
y

B y B
≈ ≈

+

Further according to Manning’s formula

Q =
1
n

 (By) y2/3 Sf
1/2

=
1
n

 (Byn) (yn)2/3 S0
1/2

It may be noted that the hydraulic radius has been replaced by the depth of flow and n is assumed
to be same for uniform and non-uniform flows. Therefore

0

fS

S =
10/3

ny
y

⎛ ⎞
⎜ ⎟
⎝ ⎠
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However, if Chezy’s formula is used instead of the Manning’s, the value of

0

fS

S =
3

ny
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

In the same manner for a channel of rectangular section

 
2

3
Q T
gA

=
2

3 3( )
Q B

g B y
= 

2

3

q

gy
= 

3
cy

y

⎛ ⎞
⎜ ⎟
⎝ ⎠

By substituting in Eq. 16.1 it becomes

dy
dx

= S0 

10/3

3

1

1

n

c

y
y

y
y

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

...(16.2)

and
dy
dx

= S0  

3

3

1

1

n

c

y
y

y
y

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

...(16.3)

4. Relation between Water Surface Slopes and Channel Bottom Slope. The term (dy/dx) represents
the slope of the water surface with respect to the channel bottom. But often the water surface slope Sw
with respect to horizontal may be required to be determined. As such a relation between the water
surface slope Sw, , the channel bottom slope S0 and the slope (dy/dx) may be developed which facilitates
the determination of Sw when S0 and (dy/dx) are known. For rising water surface as shown in Fig. 16.2
(a), from triangle abd,

Sw = sin α = 
bd
ba

 = 
cd cb

ba
−

But
cd
ba

= sin θ = S0,  and 
cb
ba = 

dy
dx

∴  Sw = S0  – 
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

...(16.4)

However, in this case if the water surface is such that point b lies above point d, then (dy/dx)> S0, and
hence Eq. 16.4 becomes

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net



Hydraulics and Fluid Mechanics788

Sw =
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

 – S0 ...(16.4 a)

W a ter su rfa ce

S lope  S W
α θa

θ

b

c

d

S lope  S o

y

(a)

W a ter su rfa ce

a
θ α

θ Slope  S o

c

d

b

(b)

dx  (sin  )α

dx  (s in  )θd y

dx

y

dx

dx  (sin  )θ

dx  (sin  )α

d y

S lope  S w

Figure16.2 Relation between water surface and channel bottom slopes

For falling water surface as shown in Fig. 16.2 (b), from triangle abd,

Sw  = sin α = 
bd
ba

 = 
cd cb

ba
+

Again  
cd
ba

= sin θ = S0,  and 
cb
ba

= 
dy
dx

∴ Sw = S0 + 
dy
dx

⎛ ⎞
⎜ ⎟⎝ ⎠

…(16.5)

16.3 CLASSIFICATION OF CHANNEL BOTTOM SLOPES
The channel bottom slopes are classified in the various categories as mentioned below:

(i) Critical Slope. The channel bottom slope is designated as critical when the bottom slope S0 is
equal to the critical slope Sc , i.e., S0 = Sc. Thus in this case the normal depth of flow will be equal to the
critical depth, i.e., yn = yc.

(ii) Mild Slope. The channel bottom slope is designated as mild when the bottom slope S0 is less
than the critical slope Sc, i.e., S0 < Sc. The application of Manning’s or Chezy’s formula will then
indicate that when the bottom slope is mild, the normal depth of flow is greater than the critical depth
i.e., yn > yc.
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(iii) Steep Slope. The channel bottom slope is designated as steep when the bottom slope S0 is greater
than the critical slope, i.e., S0 > Sc. Again the application of Manning’s or Chezy’s formula will indicate
that when the bottom slope is steep, the normal depth of flow is less than the critical depth i.e., yn < yc.

(iv) Horizontal Slope. When the channel bottom slope is equal to zero i.e., S0 = 0, the bottom slope
is designated as horizontal. Obviously for a channel with horizontal bottom the normal depth of flow
yn = ∞  (infinity).

(v) Adverse Slope. When the channel bottom slope instead of falling rises in the direction of flow it
is designated as an adverse slope. Thus in a channel with adverse bottom slope, S0 is less than zero
[i.e.,  (S0 < 0)] or it is negative. Obviously for an adverse-slopped channel the normal depth of flow yn
is imaginary or it is non-existent.

16.4 CLASSIFICATION OF SURFACE PROFILES
The various water surface profiles occurring in the channels are designated with reference to the
bottom slopes of the channels. Thus surface profiles which occur in mild-sloped channels are known

N .D .L.

C .D .L.

C .D .L.
N .D .L.

Zone (1 )

Zone (2 )

Zone (3 )

S lope = S 0

( )y yn c >  

M ild s lope, <  S So c

Zone (2 )

Zone (1 )

S lope =  S0

Steep s lope, >  S So c

( )y yn <  c

Zone (3 )

Zone (2 )

S lope = S 0

Horizon ta l s lope, = 0So

( )y  yn c =

S lope  = S0

Critical s lope , =  S So c

Zone (3 )

( is  in finite)yn 

Zone (1 )

Zone (3 )

C .D .L .
N.D.L. C .D .L.

∞

Zone (2 )

S lope = S 0

( is  im aginary)yn 

Adverse slope, < 0S o 

Zone (3 )
C.D.L.

yn

yc
yc

yn

yn

ycy = yn c

yc

Figure 16.3   Different zones for water surface profiles in channels of different bottom slopes
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as M-curves;  those which occur in steep-slopped channels are known as S-curves; those which occur
in critical-slopped channels are known as C-curves; those which occur in horizontal channels are
known as H-curves, and those which occur in adverse-slopped channels are known as A-curves.
These water surface profiles may be further classified depending upon the position of water surface
relative to critical depth yc and normal depth yn. For the given discharge and channel section the
normal depth line (N.D.L.) and the critical depth line (C.D.L.) divide the entire space above the channel
bottom into three zones (Fig. 16.3). In zone 1 the given depth y lies above yn and yc ; in zone 2 the given
depth y lies between yn  and yc  and in zone 3, y lies below yn and yc. For mild and steep slopes three
such zones are possible and the corresponding three surface profiles are designated as M1, M2, M3 and
S1, S2, S3 on the mild and steep slopes respectively. On the critical slope the normal depth yn and the
critical depth yc being the same, zone 2 vanishes and only two zones 1 and 3 exist, so that the given
depth, y lies either above the critical depth or below the critical depth resulting in either C1 or C2
curves. For horizontal-slopped channels normal depth is infinite and for adverse-slopped channels it
is imaginary, as such only two zones 2 and 3 are possible, resulting in only two types of profiles H2, H3
and A2, A3 on these two slopes. Thus it can be seen that in all twelve surface profiles are possible as
shown in Fig. 16.4.

16.5 CHARACTERISTICS OF SURFACE PROFILES
Figure 16.4 shows the various surface profiles. The surface profiles can be classified as back water
curves and drawdown curves depending on whether the depth of flow increases or decreases in the
direction of flow (or in other words, dy/dx is positive or negative). The study of surface profiles shown
in Fig. 16.4 will indicate that all the surface profiles with subscript 1 and 3, that is M1, M3, S1, S3, C1, C3,
H3 and A3, are back water (or rising) curves while those with subscript 2, that is M2, S2, H2 and A2 are
drawdown (or falling) curves. In order to plot a certain type of profile, it is necessary to know the
characteristics of each profile, which may be determined from Eq. 16.2 or 16.3 as discussed below.

1. Surface Profile in Mild-Sloped Channels. In a mild sloped channel there will be three zones viz.,
y > yn > yc, yn > y > yc, and yn > yc > y, in which respectively M1, M2 and M3 curves will be formed. In the
first zone, that is, when y >yn > yc, the given depth y can have the limiting values as y →  yn on the
upstream side and y → ∞ on the downstream side. Equation 16.2 or 16.3 shows that when y > yn > yc,

dy
dx

  is positive and as y → yn , 
dy
dx

→  0 and as y → ∞, 
dy
dx

 → S0. This indicates that M1 curve meets the

normal depth (or yn) line asymptotically on the upstream side and it tends to be horizontal on the
downstream side.

In the second zone, that is, when yn > y > yc,
dy
dx

 is negative and as y → yn, 
dy
dx

→  0 and as y → yc,  
dy
dx

→ – ∞, thereby indicating that M2 curve meets the normal depth (or yn ) line asymptotically on the
upstream side and it meets the critical depth (or yc ) line normally on the downstream side.

In the third zone, that is, when yn > yc > y, 
dy
dx

is positive, and as y →  yc, 
dy
dx

→ – ∞  and as y → 0, 
dy
dx

→ ∞, thereby indicating that M3 curve meets the critical depth (or yc) line and the channel bottom line
normally.

2. Surface Profiles in Steep-Sloped Channels. In a steep-sloped channel also there will be three
zones viz., y > yc > yn, yc > y > yn, and yc > yn > y, in which respectively S1, S2 and S3 curves will be
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formed. In the first zone, that is when y > yc > yn, 
dy
dx

 is positive and as y → yc,
dy
dx

 → ∞ and when y

→ ∞, 
dy
dx

 → S0. That is on the upstream side  S1 curve meets the critical depth (or yc) line normally and

on the downstream side it tends to be horizontal.
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Figure 16.4.   Flow profiles of gradually varied flow
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In the second zone, that is, when yc >  y > yn, 
dy
dx

 is negative and as y → yc, 
dy
dx

→ ∞ and as y → yn,

dy
dx

→  0, thereby indicating that the S2 curve meets the critical depth (or yc) line normally on the

upstream side and on the downstream side it meets the normal depth (or yn) line asymptotically.

In the third zone, that is, when yc > yn > y, 
dy
dx

 is positive and as y → yn, 
dy
dx

→  0, and as y → 0,  
dy
dx

→ ∞, thereby indicating that  the S3 curve meets the channel bed normally and it is asymptotic to the
normal depth (or yn) line.

3. Surface Profiles in Critical-Sloped Channels.  In a critical-slopped channel as discussed earlier
only two zones 1 and 3 exist and hence only C1 and C3 curves will be formed. In the first zone, that is,

when y > yc = yn, 
dy
dx

  is positive and as y → yc,
dy
dx

 → S0 = Sc, and as y → ∞,  S0 = Sc, thereby indicating

that C1 curve will be more or less a horizontal line.

In the third zone, that is, when y < yc = yn,  
dy
dx

  is positive and as y → yc,  
dy
dx

 → S0 = Sc, and as y →

0, 
dy
dx

 → S0 = Sc, thereby indicating that C3 curve will also be more or less a horizontal line.

It may however be stated that if Chezy’s formula is used and accordingly Eq. 16.3 is considered
then the C1 and C3 curves will be horizontal straight lines, but if Manning’s formula is used and
accordingly Eq. 16.2 is considered then the C1 and C3 curves will be slightly curved.

4. Surface Profiles in Horizontal Channels. In a channel with horizontal bottom S0 = 0 and hence
Eq. 16.1 may be expressed as

dy
dx

= 2

31

fS

Q T
gA

−

−
 =

2 2

4/3

3

1 c

n V
y

y
y

−

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

…(16.6)

if Manning’s formula is used, and

dy
dx

=

2

2

3

1 c

V
C y

y
y

−

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

…(16.7)

if Chezy’s formula is used.
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Further in a channel with horizontal bottom since yn = ∞ only two zones 2 and 3 exist and accordingly
only H2 and H3 curves will be formed.

In the second zone, that is, when y > yc, 
dy
dx

 is negative and as y → yc, 
dy
dx

 → – ∞ , thereby indicating

that H2 curve meets the critical depth (or yc ) line normally at the downstream end and at the upstream
end it tends to approach horizontal line tangentially.

In the third zone, that is, when y < yc, 
dy
dx

  is positive and as y → yc, 
dy
dx

→ – ∞ and as y →  0, 
dy
dx

→

∞, thereby indicating that H3 curve meets the critical depth (or yc) line and the channel bottom line
normally (i.e., vertically).

TABLE 16.1   Types of Flow Profiles in Prismatic Channels

Channel Slope Symbol Depth Relations
dx

dy
Type of profile Type of flow

None y > yn > yc None None
Horizontal H2 yn > y > yc – Drawdown Subcritical
[S0 = 0]

H3 yn > yc > y + Backwater Supercritical

M1 y > yn > yc + Backwater Subcritical
Mild
[0 < S0 < Sc] M2 yn > y > yc – Drawdown Subcritical

M3 yn > yc > y + Backwater Supercritical

C1 y > yc = yn + Backwater Subcritical
Critical
[S0 = Sc > 0] None yc = y = yn None None

C3 yc = yn > y + Backwater Supercritical

S1 y > yc > yn + Backwater Subcritical
Steep
[S0 > Sc > 0] S2 yc > y > yn – Drawdown Supercritical

S3 yc > yn > y + Backwater Supercritical

None None None
Adverse
[S0 < 0] A2 y > yc – Drawdown Subcritical

A3 yc > y + Backwater Supercritical

5. Surface Profiles in Adverse-Slopped Channels. In a channel with adverse bottom slope since S0
< 0  (i.e., S0 is negative) the normal depth is imaginary and hence only two zones 2 and 3 exist in which
A2 and A3 curves will be formed.

In the second zone, that is, when y > yc, Eq. 16.1 indicates that 
dy
dx

  is negative. Again when y → yc,

dy
dx

→  – ∞  and when y → ∞, 
dy
dx

→ S0 thereby indicating that A2 curve tends to be horizontal at the

upstream end and at the downstream end it meets the critical depth (or yc ) line normally.
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In the third zone, that is, when y < yc, 
dy
dx

  is positive, and as y → yc,
dy
dx

→  – ∞  , and as y → 0, 
dy
dx

→   ∞

thereby indicating that A3 curve meets the critical depth (or yc ) line and the channel bottom line
normally.

For the sake of convenience the above discussed characteristics of the various surface profiles have
been tabulated in Table 16.1.

(b )

C .D .L

M 3

C .D .L

C .D .L

M 2

M 3

(a)

N .D .LM 2

M 1 C .D .L
M 1

Horizon ta l
( / ) =  +dy dx

( / ) =  –dy dx

( / ) =  +dy dx

M ild S lope  ( <  )S S0 c

(c)

C.D .L

S 2 C.D .L

S 3

(e )

Steep S lope  ( <  )S S0 c
(1 )

S 3

S 2
( / ) =  –dy dx

( / ) =  +dy dx

C .D.L

( / ) =  +dy dx

C.D .L
S 1

S 1

Horizon ta l

N.D.L

(d)

Figure 16.5   Practical examples of M and S surface profiles

Some of the practical examples of the various surface profiles are shown in Figs. 16.5 and 16.6.
Since the flow profiles near the critical depth line and the channel bottom cannot be accurately defined
by the theory of gradually varied flow, they are shown with dotted lines.
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In order to determine the class of surface profile in a given channel the following procedure may be
adopted :

(i) Compute yn and yc for the given discharge and plot the lines representing channel bed and the
lines of normal and critical depths.

(ii) By comparing the normal depth and the critical depth determine whether the channel slope is
mild, critical, steep, adverse or horizontal.

c1

C .D .L.

S  =  S0 c
(a )

( / ) =  +dy dx c1

c3

( / ) = +dy dx  

(b )

c3

Critical s lope  ( =  )S S0 c

H 2
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Horizon ta l

( ) =  –dy/dx
H 2

( / ) =  +dy dx
H 3 

H 3 

A2

A2

C .D .L.
N .D .L.

C .D .L.

C .D .L.

C .D .L.

Horizon ta l s lope (  = 0)S 0

( / ) =  –dy dx

(d)

(e )

C .D .L.

A 3

C .D .L.

( / ) =  +dy dx
A3

(f)

Adverse slope (  <  0)S0

S  <  S0 c

Figure 16.6  Practical examples of C, H and A surface profiles.
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(iii) Knowing the normal depth and the depth at the control section, determine the type of the
surface profile.

A control section  is that at which for a given discharge the depth of flow is known or it can be controlled
to a required value. If the depth of non-uniform flow y is above the critical depth it is governed by a
downstream control and if it is less than the critical depth it is governed by an upstream control.

Thus knowing the values of the given depth y, normal depth yn and the critical depth yc the
appropriate surface profile can be sketched.

(iv) If in any reach the supercritical depth has to meet the subcritical depth, i.e., when the stream of
water has to cross the critical depth line then there will be a hydraulic jump developed in between, as
shown in Figs. 16.5 and 16.6.

16.6 INTEGRATION OF THE VARIED FLOW EQUATION
In practice it is often required to determine the distance upto which the surface profile of gradually
varied flow extends. For instance, if a weir is constructed across a river having a mild slope then it may
be required to estimate the distance on the upstream side upto which the effect of the resulting M1
profile exists. In order to solve the problems of this type it is necessary to integrate the dynamic
equation of gradually varied flow. The various methods developed for integrating the varied flow
equation may be broadly classified as follows:

(a) The step method.
(b) The graphical integration method.
(c) The direct integration method.
(a) The Step Method. In the step method of integration the entire length of the channel is divided

into short reaches and the computation is carried out step by step from one end of the reach to the other.
Figure 16.7 illustrates a channel reach of length dx, which is sufficiently small so that in this reach the

21

S 0

dx

Datum

C hannel bottom
S 0 dx

y1

V 1
2

2g
Wate r su rface

Energy line h f   =S d xf

V 2
2

2g

y2
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Figure 16.7 Short reach of channel
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16.7 HYDRAULIC JUMP
The hydraulic jump is defined as the sudden and turbulent passage of water from a supercritical state
to subcritical state. It has been classified as rapidly varied flow, since the change in depth of flow from
rapid to tranquil state is in an abrupt manner over a relatively short distance. The flow in a hydraulic
jump is accompanied by the formation of extremely turbulent rollers and there is a considerable
dissipation of energy.

A hydraulic jump will form when water moving at a supercritical velocity in a relatively shallow
stream strikes water having a relatively large depth and subcritical velocity. It occurs frequently in a
canal below a regulating sluice, at the foot of a spillway, or at the place where a steep channel bottom
slope suddenly changes to a flat slope.

In order to study the conditions of flow before and after the hydraulic jump the application of the
energy equation does not provide an adequate means of analysis, because hydraulic jump is associated
with an appreciable loss of energy which is initially unknown. As such in the analysis of hydraulic
jump the momentum equation is used by considering the portion of the hydraulic jump as the control
volume. The following assumptions are, however, made in this analysis:

(1) It is assumed that before and after jump formation the flow is uniform and the pressure distribution
is hydrostatic.

(2) The length of the jump is small so that the losses due to friction on the channel floor are small
and hence neglected.

(3) The channel floor is horizontal or the slope is so gentle that the weight component of the water
mass comprising the jump is negligibly small.
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Figure 16.8   Hydraulic jump in a prismatic channel
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Consider a hydraulic jump formed in a prismatic channel with horizontal floor carrying a discharge
Q as shown in Fig. 16.8. Let the depth of flow before the jump at section 1 be y1 and the depth of flow
after the jump at section 2 be y2. The depth y1 is known as initial depth and y2 is known as sequent depth.

The symbols A1, V1 and 1z represent the area of cross-section, mean velocity of flow and the depth of
the centroid of area A1 below the free surface respectively at section 1 before the jump and A2, V2 and

2z are the corresponding quantities at section 2 after the jump.

The only external forces acting on the mass of water between the sections 1 and 2 are the hydrostatic
pressures P1 and P2 at sections 1 and 2 respectively, as the frictional loss has been assumed to be
negligible. Hence in accordance with the momentum equation

(P2 – P1) = ρQ (V1 – V2)

or wA2 2z – wA1 1z =
w
g

   Q  
1 2

Q Q
A A

⎛ ⎞
−⎜ ⎟

⎝ ⎠

or
2

1

Q
gA

 + A1 1z =
2

2

Q
gA

 + A2 2z ...(16.14)

As already explained in Chapter 15, the sum 
2Q

Az
gA

⎛ ⎞
+⎜ ⎟

⎝ ⎠
is called the specific force, designated by F.

Thus if F1 and F2 represent the specific force at sections 1 and 2 respectively then Eq. 16.14 may be
written as

F1 = F2 ...(16.15)
The specific force F is a function of the depth of flow y and hence it can be plotted against the depth of
flow y to obtain specific force curve as shown in Fig. 16.8. It may be noted from the specific force curve
that alike specific energy the specific force also attains a minimum value at critical depth yc.

It is obvious from Eq. 16.15 that the specific force F1 corresponding to y1 and the specific force F2
corresponding to y2 are same which may also be seen from the specific force curve shown in Fig. 16.8.
The initial depth y1 and the sequent depth y2 are commonly known as the conjugate depths, which
indicate the same specific force (in order to distinguish them from the alternate depths which indicate
the same specific energy).

Equation 16.14 enables the determination of y2, if y1 is given or vice versa for a known discharge Q
flowing in a given channel section. Alternatively from the specific force curve also, knowing y1 and
hence F1, y2 can be determined or vice versa, since both y1 and y2 correspond to same specific force.

Knowing the conjugate depths y1 and y2 for a known discharge Q in a given channel section the
specific energies E1 and E2 at the sections 1 and 2 respectively may be computed from which the loss
of energy in the jump can be determined. Alternatively the loss of energy in the jump may also be
determined by using the specific energy curve in combination with specific force curve as indicated
below.

Knowing y1 the corresponding specific force F1 can be found from specific force curve as indicated
by the point P1. A vertical through point P1 will cut the curve at point P2. Since F1 = F2, the ordinate of
point P2  will indicate the depth y2. Horizontal lines drawn through points P1 and P2 will cut the
specific energy curve at points P´1 and P´2 respectively, indicating the values of the specific energies
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before and after the jump, i.e., E1 and E2 respectively. The horizontal distance between points P´1 and
P´2 is the energy loss ΔE, due to hydraulic jump.

(a) Hydraulic Jump in Rectangular Channels. For rectangular channels Eq. 16.14 can be further
simplified and a relation between the conjugate depths y1 and y2 can be obtained. Thus if B is the

width of the rectangular channel, then A1 = By1; A2 = By2,  1z = (y1/2), 2z = (y2/2) and q = (Q/B ). By
substituting these values in Eq. 16.14, it becomes

2

1( )
Q

g By
+ By1

1

2
y⎛ ⎞

⎜ ⎟⎝ ⎠
=

2

2( )
Q

g By
   + By2 

2

2
y⎛ ⎞

⎜ ⎟⎝ ⎠

or   
2

2
1 2

1 1Q
y ygB

⎛ ⎞
−⎜ ⎟⎝ ⎠

 = 2 2
2 1

1
( )

2
y y−

or
2

2 1

1 2

q y y
g y y

−⎛ ⎞
⎜ ⎟⎝ ⎠

 = 2 1 2 1
1

( )( )
2

y y y y− +

or
22q

g
= y1y2 (y1 + y2) …(16.16)

Equation 16.16 is the momentum equation for hydraulic jump in rectangular channels.
Equation 16.16 can be considered as quadratic equation in terms of y1 or y2 and its solution gives

the relations between the conjugate depths y1 and y2 as

y2 = – 1

2
y

  + 
2 2

1

1

2
2

qy
gy

⎛ ⎞ +⎜ ⎟⎝ ⎠
…(16.17)

 y 1 = – 2

2
y

   + 
2 2

2

2

2
2

qy
gy

⎛ ⎞ +⎜ ⎟⎝ ⎠
…(16.18)

In Eqs 16.17 and 16.18 the negative sign before the square root has not been used since it gives
negative values.

Equations 16.17 and 16.18 may also be written as

2

1

y
y

=
⎡ ⎤
⎢ ⎥− + +
⎢ ⎥⎣ ⎦

2

3
1

81
1 1

2
q

gy
…(16.19)

1

2

y
y

=
⎡ ⎤
⎢ ⎥− + +
⎢ ⎥⎣ ⎦

2

3
2

81
1 1

2
q

gy
…(16.20)

Since for a rectangular channel 
2q
g

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 = yc
3, where yc  is the critical depth for discharge q. The Eqs

16.19 and 16.20 may also be written as
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2

1

y
y

=
⎡ ⎤⎛ ⎞⎢ ⎥− + + ⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

3

1

1
1 1 8

2
cy

y
…(16.21)

1

2

y
y

=
⎡ ⎤⎛ ⎞⎢ ⎥− + + ⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

3

2

1
1 1 8

2
cy

y
…(16.22)

Since the Froude numbers Fr1 and Fr2 before and after the hydraulic jump respectively are given as

Fr1 =
3
1

q

gy
   and Fr2 = 

3
2

q

gy

Equations 16.21 and 16.22 may be written as

2

1

y
y

= 2
1

1
1 1 8

2
Fr⎡ ⎤− + +⎢ ⎥⎣ ⎦

…(16.23)

and 1

2

y
y

= 2
2

1
1 1 8

2
Fr⎡ ⎤− + +⎢ ⎥⎣ ⎦

…(16.24)

When the conjugate depths are known the energy loss ΔE in a hydraulic jump may be computed as

ΔE =
2

1
1 2

V
y

g

⎛ ⎞
+⎜ ⎟⎝ ⎠

 – 
2
2

2 2
V

y
g

⎛ ⎞
+⎜ ⎟⎝ ⎠

or ΔE =
2

1 2
12 ( )

Q
y

g By

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
 – 

2

2 2
22 ( )

Q
y

g By

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦

or ΔE =
2

2 2
1 2

1 1
2
q
g y y

⎛ ⎞
−⎜ ⎟⎝ ⎠

  – (y2 – y1)

or ΔE =
−2 2 2

2 1
2

1 22 ( )

q y y
g y y

  – (y2 – y1)

By substituting for 
2q
g

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

  from Eq. 16.16 the above expression becomes

ΔE = ( )
2 2

1 2 1 2 2 1
2 12

1 2

( )( )1
 

4 ( )

y y y y y y
y y

y y

+ −
− −

which on simplification becomes
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ΔE =
3

2 1

1 2

( )
4

y y
y y
−

...(16.25)

However, as indicated in Illustrative Example 16.12, the energy loss ΔE in a hydraulic jump in a
rectangular channel may also be expressed as

ΔE =
3

1 2

1 2

( )
2 ( )

V V
g V V

−

+
...(16.25 a)

where V1 and V2 are the mean velocities of flow before and after the jump respectively.
The height of the jump hj may be defined as the difference between the depths after and before the

jump, i.e., hj = (y2 – y1).
The length of the jump Lj may be defined as the distance measured from the front face of the jump to

a point on the surface immediately downstream from the roller. However, the length of the jump
cannot be determined analytically. In addition, practical complications arise from the general instability
of the phenomenon and the difficulty of defining the beginning and the end sections of the jump. The
length of the jump has been investigated experimentally by many hydraulicians and as a general
statement it may be said that for a rectangular channel the length of the jump Lj varies between 5 and
7 times the height of the jump, that is,

Lj = (5 to 7) hj =  (5 to 7) (y2 – y1) …(16.26)
(b) Types of Hydraulic Jump. Equation 16.23 emphasizes the importance of the Froude number Fr1 of

the incoming supercritical flow, as a parameter describing the phenomenon of hydraulic jump. As such
according to the studies of U.S. Bureau of Reclamation, depending upon the value of Froude number Fr1 of
the incoming flow, there are five distinct types of the hydraulic jump which may occur on a horizontal floor.
These different types of hydraulic jump are shown in Fig. 16.9 and are described below.

Undu lar jum p
( = 1 to 1 .7 )Fr1 

W eak jum p
( = 1.7 to  2 .5 )Fr1  

O scilla ting  jum p
( =  2.5 to 4 .5 )Fr1

S teady jum p
( =  4.5 to 9 .0 )F r1  

S trong jum p
( >  9.0)Fr1

Figure 16.9  Types of hydraulic jump
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 (1) For Fr1 = 1.0 to 1.7, the water surface shows undulations and the jump is called an undular jump.
(2) For Fr1 = 1.7 to 2.5, the jump formed is called weak jump, as the velocity throughout is fairly

uniform and only a small amount of energy is dissipated. In this case a series of small rollers form on
the jump surface, but the downstream water surface remains quite smooth.

(3) For Fr1 = 2.5 to 4.5, jump formed is known as an oscillating jump. In this case the entering jet of
water oscillates back and forth from the bottom to the surface and back again.

(4) For Fr1 = 4.5 to 9.0 the jump formed is well stabilized and is called a steady jump. For this jump the
energy dissipation ranges from 45 to 70 per cent.

(5) For Fr1 = 9.0 and larger the jump formed is called a strong jump. In this case a rough surface
prevails which continues downstream for a long distance. The jump action is quite rough but is
effective since the energy dissipation may reach 85 per cent.

The above described different types of hydraulic jump refer only to channels of rectangular section.
In other channel sections the shape of the jump is often complicated additionally by cross currents.

In the above paragraphs only the hydraulic jump in rectangular channel has been discussed, but it
may however be mentioned that by using Eq. 16.14 the hydraulic jump in prismatic channel of any
shape can be analysed.

(c) Applications of Hydraulic Jump. The phenomenon of hydraulic jump has many practical
applications as listed below.

(1) It is a useful means of dissipating excess energy of water flowing over spillways and other
hydraulic structures or through sluices and thus preventing possible erosion on the downstream side
of these structures.

(2) It raises the water level in the channels for irrigation etc.
(3) It increases the weight on an apron of a hydraulic structure due to increased depth of flow and

hence the uplift pressure acting on the apron is considerably counterbalanced.
(4) It increases the discharge through a sluice by holding back the tail water.
(5) It may be used for mixing chemicals in water and other liquids, since it facilitates thorough

mixing due to turbulence created in it.

16.8 LOCATION OF HYDRAULIC JUMP
Often it is required to locate the exact position of the hydraulic jump in a channel under different
conditions of flow. As such the following three typical cases for the location of the exact position of the
hydraulic jump are described below.
Case (1)
In this case a jump forms below a regulating sluice in a mild sloped channel, see Fig. 16.10 (a). The jet
of water issuing from the sluice will contract upto vena contracta section at a distance Le from the
sluice which is taken approximately equal to the sluice opening h. Thereafter it will follow M3 profile
as indicated by DE in Fig.16.10 (a). The location of the jump in this case will be considerably affected
by the length of the channel reach on the downstream side of the sluice. Thus if there exists a long
reach of channel with same slope on the downstream side of the sluice, then after the formation of the
jump, uniform flow with depth of flow equal to the normal depth of flow will be developed. Hence the
depth of flow after the jump or the sequent depth will be equal to the normal depth of flow. As such
from the vena contracta section the depth of flow will gradually increase, following M3 profile, upto a
certain section on the downstream side, where the depth of flow will be equal to the initial depth
required for the formation of the jump corresponding to the sequent depth equal to the normal depth
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