
Hardware-Software design issues on embedded

system

Embedded Systems overview

• Is a microcontroller or microprocessor based system which is
designed to perform a specific task.

• Embedded means something that is attached to another thing

• For example, a fire alarm is an embedded system; it will sense only
smoke

• Embedded systems may work independently or attached to a larger
system to work on a few specific functions

• Three main components of Embedded systems are:

– Hardware

– Software

– Firmware

• has Real Time Operating system (RTOS) that supervises the
application software and provide mechanism to let the
processor run a process as per scheduling by following a plan
to control the latencies.

• RTOS defines the way the system works.

• It sets the rules during the execution of application program.

• A small scale embedded system may not have RTOS

Characteristics of an Embedded System

• Performs specific task

• Low Cost

• Time Specific: It performs the tasks within a certain time frame.

• Low Power: Embedded Systems don’t require much power to
operate.

• High Efficiency: The efficiency level of embedded systems is so
high.

• Minimal User interface: These systems require less user interface
and are easy to use.

• Less Human intervention: Embedded systems require no human
intervention or very less human intervention.

• Highly Stable: Embedded systems do not change frequently mostly
fixed maintaining stability.

• High Reliability: Embedded systems are reliable they perform
tasks consistently well.

• Use microprocessors or microcontrollers: Embedded systems use

microprocessors or microcontrollers to design and use limited

memory.

• Manufacturable: The majority of embedded systems are compact and

affordable to manufacture. They are based on the size and low

complexity of the hardware.

Classification of Embedded System

Real-Time Embedded Systems

• Provides output in a particular/defined time interval.

• Provide quick response in critical situations which gives most

priority to time based task performance and generation of output.

• That’s why real time embedded systems are used in defense sector,

medical and health care sector, and some other industrial

applications where output in the right time is given more

importance.

• Is divided into two types i.e.

– Soft Real Time Embedded Systems

• In these types of embedded systems time/deadline is not so

strictly followed.

• If deadline of the task is passed (means the system didn’t

give result in the defined time) still result or output is

accepted.

– Hard Real-Time Embedded Systems

• In these types of embedded systems time/deadline of task is

strictly followed.

• Task must be completed in between time frame (defined time

interval) otherwise result/output may not be accepted.

• Examples :

– Traffic control system

– Military usage in defense sector

– Medical usage in health sector

Stand Alone Embedded Systems

• Stand Alone Embedded Systems are independent systems which

can work by themselves they don’t depend on a host system.

• It takes input in digital or analog form and provides the output.

• Examples :

– MP3 players

– Microwave ovens

– calculator

Networked Embedded Systems

• Are connected to a network which may be wired or wireless to

provide output to the attached device.

• They communicate with embedded web server through network.

• Examples :

– Home security systems

– ATM machine

– Card swipe machine

Mobile Embedded Systems

• Are small and easy to use and requires less resources.

• They are the most preferred embedded systems.

• In portability point of view mobile embedded systems are also

best.

• Examples :

– MP3 player

– Mobile phones

– Digital Camera

Based on Performance and micro-controller

It is divided into 3 types as follows

Small Scale Embedded Systems

• Are designed using an 8-bit or 16-bit micro-controller.

• They can be powered by a battery.

• The processor uses very less/limited resources of memory and

processing speed.

• Does not act as an independent system they act as any component

of computer system but they did not compute and dedicated for a

specific task.

Medium Scale Embedded Systems

• Are designed using an 16-bit or 32-bit micro-controller.

• Are faster than that of small Scale Embedded Systems.

•

• Integration of hardware and software is complex in these systems.

• Java, C, C++ are the programming languages are used to develop

medium scale embedded systems.

• Different type of software tools like compiler, debugger, simulator

etc are used to develop these type of systems.

Sophisticated or Complex Embedded Systems

• Are designed using multiple 32-bit or 64-bit micro-controller.

• These systems are developed to perform large scale complex

functions.

• These systems have high hardware and software complexities.

• We use both hardware and software components to design final

systems or hardware products.

Custom Single-Purpose Processor Design

Processor

• Is a digital circuit that performs computational tasks.

• The minimum requirement to be a processor is the presence of

controller and data path.

• The different processor technologies are as follows:

– General Purpose Processor (GPP)

• It is a programmable circuit that can perform varieties of

tasks.

• It consists of program memory and general data path.

• The data path has large register array and one or more

general purpose ALU.

– Single Purpose Processor (SPP)

• It is a digital circuit designed to perform exactly one

program.

• Digital Camera is a SPP. It only consists of data memory but

not program memory.

– Application Specific Processor (ASP)

• It is a programmable circuit that is optimized for a particular

class of applications.

• It consists of program memory , data memory , custom

designed ALU and optimized datapath.

Custom Single Purpose Processor

• Faster performance

• Size is smaller

• Lower power management

• High NRE cost

• Longer Time to market

• Less Flexible

Designing custom single purpose processor

• Develop an algorithm or function that computes the desired output.

• Convert algorithm into a complex state diagram or FSMD (finite

state machine with data)

• Divide functionality with datapath port and controller part.

• Datapath consists of interconnection of combinational and

sequential components. Controller consists of pure FSM

• Complete controller design by implementing FSM with

combinational logic.

Single purpose processor design

Optimizing Custom Single Purpose Processor

Optimization

• Optimization is the technique of improving the design metrics so as

to get the best possible values of various design metrics.

• The optimization opportunities in custom SPP are as follows:-

Optimization of original program:

• The algorithms are analyzed in terms of time complexity and space

complexity , and hence we try to develop more efficient alternative

algorithms.

• It involves decreasing of number of computations and size of

variables if possible.

• Also involves time and space complexity

• Operations used

– Multiplication and division very expensive

Optimizing FSMD

Areas of possible improvements

• merge states

– states with constants on transitions can be eliminated, transition

taken is already known

– states with independent operations can be merged

• separate states

– states which require complex operations (a*b*c*d) can be

broken into smaller states to reduce hardware size

• scheduling.

Optimizing the datapath

• Sharing of functional units

• one-to-one mapping, as done previously, is not necessary

• if same operation occurs in different states, they can share a single

functional unit

• Multi-functional units

• ALUs support a variety of operations, it can be shared among

operations occurring in different states

Optimizing FSM

• State encoding

– task of assigning a unique bit pattern to each state in an FSM

– size of state register and combinational logic vary

– can be treated as an ordering problem

• State minimization

– task of merging equivalent states into a single state

– state equivalent if for all possible input combinations the two

states generate the same outputs and transitions to the next same

state

Basic Architecture of Software Design and Operation

• It consists of general datapath

• Control unit does not store algorithms

• Algorithm is programmed into memory

Operations

• Fetch Instruction: It gets the next instructions as indicated by

location in memory pointed by PC and stores into IR.

• Decode Instruction: It determines the actual operations

performed by the instructions at IR.

• Fetch Operands: It gets the operand data needed for instruction

from memory to appropriate registers of datapath.

• Execute: The actual arithmetic or logical operations is

performed by moving data through ALU.

• State Results: It writes the data from datapath register into

memory .

Programmer's View

• Programmer does not need detailed understanding of architecture.

• They just need to understand which instructions can be executed.

• Generally there are two levels of instructions assembly level and

structured languages.

• Instruction set is the legal set of instructions that can be processed

by a processor.

• Addressing modes indicates how the data for any operation is

referenced in the instruction.

Programmer’s Consideration

• Program and data memory space

• Registers

• Input Output (I/O)

• Interrupts

• Operating System

Development Environment

• Development processor: the processor on which programs are

written.

• Target Processor: The processor that will run the program.

• If Development and target processor are different , the code can be

run by downloading to target processor or by simulation.

• Simulation can be done by using HDL and Instruction set

simulator(ISS)

Pipelining

• Pipelining is the mechanism to increase instruction throughput of a

microprocessor.

• It assumes the independent operations to be performed

simultaneously.

• Superscalar microprocessor executes two or more scalar operations

in parallel and requires two or more ALU.

• VLIW (Very Long Instruction Word) architecture is a static

superscalar microprocessor that encodes several operations in single

machine instructions.

Application Specific Instruction Set Processor

• Is the processor targeted for a particular domain.

• This architecture is domain specific but can be programmed .

• For example Microcontroller , Digital Signal Processor

• It is designed to exploit special characteristics in the target

application in order to meet performance, cost and energy

requirements

• Is considered as balance between two extremes: ASICs and general

purpose processors

• Application specific integrated circuit (ASIC) is a custom

integrated circuit designed and optimized to fit a specific purpose

and product

Benefits of an ASIP solution

• Maintain a level of flexibility/programmability through an

instruction set

• Overcome the problems of conventional RISC/DSP architectures

– Fixed level of parallelism which may prove inefficient for real-

time applications of high computational complexity

– Prohibitively high energy consumption

– Time-critical tasks that require the incorporation of dedicated

hardware modules

• Shortening of debugging/verification time

• Key enabler is FPGA technology (rapid prototyping/reconfigurable

platforms)

VHDL

V : VHSIC (Very High Speed Integrated Circuit), H : Hardware, D :

Description, L : Language

• Stands for Very High-Speed Integration Circuit HDL (Hardware

Description Language).

• It is an IEEE (Institute of Electrical and Electronics Engineers) standard

hardware description language that is used to describe and simulate the

behavior of complex digital circuits.

• The most popular examples of VHDL are Odd Parity Generator, Pulse

Generator, Priority Encoder, Behavioral Model for 16 words, 8bit

RAM, etc.

VHDL supports the following features:

• Design methodologies and their features.

• Sequential and concurrent activities.

• Design exchange, Standardization, Documentation, Readability

• Large-scale design

• A wide range of descriptive capability

VHDL is used for the following purposes:

• For Describing hardware

• As a modeling language

• For a simulation of hardware

• For early performance estimation of system architecture

• For the synthesis of hardware

Basic Elements of VHDL

• There are the following three basic elements of VHDL:

1. Entity

• The Entity is used to specify the input and output ports of the

circuit.

• An Entity usually has one or more ports that can be inputs (in),

outputs (out), input-outputs (inout), or buffer.

• An Entity may also include a set of generic values that are used to

declare properties of the circuit.

Entity Declaration

It can be declared using the following syntax:

Simplified syntax

entity entity_name is

ort (

port_1_name : mode data_type;

ort_2_name : mode data_type;

.......

Port_n_name : mode data_type

);

end entity_name;

Example: entiy orgate is

port (

a : in std_logic; b : in std_logic;

c : out std_logic); end orgate;

Using generic
• If an entity is generic, then it must be declared before the ports. Generic does not have a mode, so it can

only pass information into the entity.
Syntax:
entity entity_name is

generic (
generic_1_name : data_type;
generic_2_name : data_type;
........
generic_n_name : data_type
);

port (
port_1_name : mode data_type;
port_2_name : mode data_type;
........
Port_n_name : mode data_type
);

end entity_name;
Example:
entity Logic_Gates is

generic (Delay : Time := 10ns);
port (

Input1 : in std_logic;
Input2 : in std_logic;
Output : out std_logic
);

end Logic_Gates;

Rules for writing Port name:

• - Port name consist of letters, digits, and underscores.
- It always begins with a letter.
- Port name is case insensitive.

• Modes of Port

in Input port
out Output port
inout Bidirectional port
buffer Buffered output port

2. Architecture

• Architecture is the actual description of the design, which is used to
describe how the circuit operates. It can contain both concurrent and
sequential statements.

Architecture Declaration

• An architecture can be declared using the following syntax:

• architecture architecture_name of entity_name is

• begin

• (concurrent statements)

• end architecture_name;

Example:
architecture synthesis of andgate is

begin

c <= a AND b;

end synthesis;

3. Configuration

• A configuration defines how the design hierarchy is linked together. It is
also used to associate architecture with an entity.

Configuration Declaration
configuration configuration_name of entity_name is

--configuration declarations

for architecture_name

for instance_label : component_name

use entity library_name.entity_name(architecture_name);

end for;

--

end for;

end [configuration] [configuration_name];

Example:

configuration demo_config of even_detector_testbench is

for tb_archi

for uut : even_detector

use entity work.even_detector (sop_archi);

end for;

end for;

end demo_config;

Types of Modeling styles in VHDL

• There are 4 types of modeling styles in VHDL:

1. Data flow modeling (Design Equations)

• Data flow modeling can be described based on the Boolean

expression.

• It shows how the data flows from input to output. It works on

Concurrent execution.

2. Behavioral modeling (Explains Behaviour)

• Behavioral modeling is used to execute statements sequentially.

• It shows that how the system performs according to the current
statement.

• Behavioral modeling may contain Process statements, Sequential
statements, Signal assignment statements, and wait statements.

3. Structural modeling (Connection of sub modules)

• Structural modeling is used to specify the functionality and
structure of the circuit.

• Structural modeling contain signal declarations, component
instances, and port maps in component instance.

VHDL objects

• VHDL uses the following three types of objects:

1. Constants

• Constant is an object which can only hold a single value that cannot
be changed during the whole code.

• Example: constant number_of_bytes integer:=8;

2. Variables

• A variable also holds a single value of a given type.

• The value of the variable may be changed during the simulation by

using variable assignment operator.

• Variables are used in the processes and subprograms.

• Variables are assigned by the assignment operator ":=".

• Example:

• variable index: integer :=0;

3. Signals

• Signals can be declared in architecture and used anywhere within

the architecture.

• Signals are assigned by the assignment operator "<=".

• Example: Signal sig1: std_logic;

Sig1 <= '1'

Pipelining in VHDL

• Step-by-step guide to building a 3-stage pipelined processor for
arithmetic operations

Instruction Fetch (IF) Stage:

• This stage fetches the instruction from memory and prepares it for
decoding.

Instruction Decode (ID) Stage:

• This stage decodes the fetched instruction and extracts the operation
to be executed.

Execution (EX) Stage:

• This stage performs the actual arithmetic operation based on the
decoded instruction.

Data Hazards and Forwarding Logic

• In real-world scenarios, data hazards may occur when instructions
depend on the results of previous instructions still in the pipeline.
To handle these hazards, forwarding logic is required to forward
data to the correct stages.

Overflow and data representation using VHDL

We get

• Computers are designed to deal with a set of number of bits at once

• For example 8, 16, 32 or 64 bits

• Due to which the bit of left would be lost

• This is called overflow

Design of combinational and sequential logic using VHDL

NOT Gate

library ieee;

use ieee.std_logic_1164.all;

ENTITY not 1 IS

PORT(x:IN STD_LOGIC; F:OUT STD_LOGIC;);

END not1;

ARCHITECTURE behv1 of not1 IS

BEGIN

PROCESS(X)

BEGIN

IF(X==’1’) THEN F<=’0’;

ELSE F<=’1’;

ENDIF;

ENDPROCESS;

END behv1;

OR Gate

Library ieee;

use ieee.std_logic_1164.all;

ENTITY or2 IS

PORT (x,y:IN STD_LOGIC; F:OUT STD_LOGIC;);

END or2;

ARCHITECTURE behv1 OF or2 IS

BEGIN

process(x,y)

BEGIN

IF ((X=’0’) AND (Y==’0’))THEN

F<=’0’;

ELSE

F<=’1’;

ENDIF;

END process;

END behv1;

XOR Gate

Library ieee;

Use iee.std_logic_1164.all

ENTITY xor2 is

PORT (x,y :IN STD_LOGIC; F: OUT STD_LOGIC);

END xor 2;

ARCHITECTURE behv1 OF xor2 IS

BEGIN

IF((x==’0’) AND (Y==’0’)) THEN F<=’0’ ;

ELSE IF ((X=’1’) AND (Y==’1’)) THEN F<=’0’;

ELSE

F<=’1’;

END IF ;

END PROCESS;

END behv1;

4:1 MUX

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity mux_4to1 is

port(

A,B,C,D : in STD_LOGIC;

S0,S1: in STD_LOGIC;

Z: out STD_LOGIC

);

end mux_4to1;

architecture bhv of mux_4to1 is

begin

process (A,B,C,D,S0,S1) is

begin

if (S0 ='0' and S1 = '0') then Z <= A;

elsif (S0 ='1' and S1 = '0') then Z <= B;

elsif (S0 ='0' and S1 = '1') then Z <= C;

else Z <= D;

end if;

end process;

end bhv;

• Which of the following is a not a characteristics of
combinational circuits?
a) The output of combinational circuit depends on present input
b) There is no use of clock signal in combinational circuits
c) The output of combinational circuit depends on previous
output
d) There is no storage element in combinational circuit

• For using a process to implement a combinational circuit, which
signals should be in the sensitivity list?
a) Inputs of the circuit
b) Outputs of the circuit
c) Both of the Inputs and Outputs
d) No signal should be in the sensitivity list

• A 4 to 16 decoder can be used as a code converter. What will be
the inputs and outputs of the converter respectively?
a) Binary, Octal
b) Octal, Binary
c) Hexadecimal, Binary
d) Binary, Hexadecimal

Which of the following entity declares the ports of a 3 by 8
decoder?
a)
– ENTITY decoder IS PORT(inp : IN STD_LOGIC_VECTOR(3

DOWNTO 0); Outp: OUT STD_LOGIC_VECTOR(8 DOWNTO 0));
END decoder;

b)
– ENTITY decoder IS PORT(inp : IN STD_LOGIC_VECTOR(8

DOWNTO 0); Outp: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END decoder;

c)
– ENTITY decoder IS PORT(inp : IN STD_LOGIC_VECTOR(7

DOWNTO 0); Outp: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));
END decoder;

d)
– ENTITY decoder IS PORT(inp : IN STD_LOGIC_VECTOR(2

DOWNTO 0); Outp: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END decoder;

• What does the architecture of an entity define?
a) External interface
b) Internal functionality
c) Ports of the entity
d) Specifications

• Which of the following is the correct architecture for a simple Nand gate?

a)ARCHITECTURE my_arch OF nand_gate IS BEGIN x <= a NAND b; END
my_arch;

b)BEGIN ARCHITECTURE my_arch OF nand_gate IS x <= a NAND b; END
behavioral;

c)BEGIN ARCHITECTURE behavioral OF nand_gate IS x <= a NAND b; END
my_arch;

d)ARCHITECTURE nand OF nand_gate IS BEGIN x <= a NAND b; END
nand;

• Which of the following can’t be declared in the declaration part of the
architecture?
a) Signals
b) Subprograms
c) Components
d) Libraries

• Which of the following task swapping method is a better choice in the
embedded systems design?
a) time slice
b) RMS
c) cooperative multitasking
d) pre-emptive

• How an embedded system communicate with the outside world?
a) Memory
b) Output
c) Peripherals
d) Input

• Which of the following helps in reducing the energy consumption of the
embedded system?
a) emulator
b) debugger
c) simulator
d) compilers

• Which design considers both the hardware and software during the embedded
design?

Memory Design
Software/ hardware codesign
Platform-based design
Peripheral design

• How is the protection and security for an embedded system
made?
a) Security chips
b) Memory disk security
c) IPR (intellectual property right)
d) OTP

• Which type of memory is suitable for low volume
production of embedded systems?
a) Non-volatile
b) RAM
c) Volatile
d) ROM

• Which command takes the object file and searches library
files to find the routine calls?
Emulator
Simulator
Linker
Debugger

• Which simulator/ debugger is capable of
displaying output signal waveform resulting from
stimuli applied to the inputs?

a) VHDL emulator

b) VHDL simulator

c) VHDL locator

d) VHDL debugger

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

