Part 3

9.3 Knowledge representation: Knowledge representations and Mappings. Approaches to Knowledge
Representation. Issues i Knowledge Representation. Semantic Nets. Frames. Propositional Logic(PL)
(Syntax. Semantics. Formal logic-connectives. tauiology. validity. well-formed-formmula. Inference using
Resolution). Predicate Logic (FOPL. Syntax. Semantics. Quantification. Rules of inference. umfication.
resolution refutation system)., Bayes' Rule and it use. Bayesian Networks. and Reasoning in Belief

Networks. (ACtE0903)

Note - We are dealing all the topics w.r.t to the rational agent
perspective and hence design the Al systems from the agent’s way



Why Knowledge Representation??

Problem solving through searching does not involve
the representation of facts of the world.

Ex =2 Best first search(BFS) just simply generates
successors and computes the h(n) function without
reference to domain specific knowledge.

However to solve more real complex world problems
we need a lot of

1. facts(knowledge) about the world related to the
problem

2. and mechanisms to manipulate these facts .
This is where knowledge representation comes in.




Knowledge and Knowledge Representation

* Consists of facts, concepts, rules about the
world etc and these are represented as
pictures, texts or anything that an agent can
understand

* Knowledge Representation = express the
knowledge about the world in a computer-
tractable form. i.e. express the knowledge
about the world in such a way that computers
can handle it



knowledge representation

* Key aspects of knowledge representation languages are:
— Syntax: describes how sentences are formed in the language.

— Semantics: describes the meaning of sentences, what is it the
sentence refers to in the real world.

— Computational aspect: describes how sentences and objects
are manipulated in concordance with semantically conventions.

* A formal language is required to represent knowledge in a
computer tractable form and reasoning processes are

required to manipulate this knowledge to deduce non-
obvious facts.



Facts and Representations

* Facts 2 Truths in the world. It is the fact that
we want to represent.

 We need to representation facts in some
formal/ mathematical way.

* Once we represent the facts only then can we
manipulate them



Mapping Between Facts and Representations
Mapping is the process that maps facts to representations and
vice versa.

The forward representation mapping maps from facts to
representations while the backward representation mapping
maps from representations to facts.

- It shows the relationship between the objects.

At knowledge level facts are described and at symbol level
facts are defined in terms of symbols so that the symbols can
be manipulated by the computer program
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How do we represent Facts????

* 1. One way to represent fact is using one of the natural
language (the English language)

2. Now we can have the English representation of those facts
to facilitate getting information into and out of the system

* 3. 0Once we represent the facts in English we can have a
mapping function to map the English sentences into the
representation that we are actually going to use and vice
Versa

Real World
eal Wor Mapping

function
f(X) Representation Of

Represent Facts
in English

English Facts to some
formal logic




An example = Mapping between Facts and Representations

Fact Represented in
English Language—>

Mapping
function
f(X)

Src:
https://www.pinterest.c

Representation of English
om/rubabijii/coloured-

" Language into some logical
tal form—>

Lets suppose we also have a logical representation of the fact that : >

All dogs have tail = Vx: Dog(x) = has_tail(x)

Now from the facts : Dog(Tommy) and Vx : Dog(x) = has_tail(x)

we can derive new fact

- has_tail(Tommy) -------- Mapping to English Language------ > Tommy has tail


https://www.pinterest.com/rubabjii/coloured-tail/

Knowledge Representation Using Logic
Logic is defined as a formal language for expressing
knowledge and ways of reasoning.

Logic makes statements about the world which are true
(or false).

Logic combines the advantages of natural
anguages and formal languages.

_ogic Is:

— concise

— unambiguous

— context insensitive

— expressive

— effective for inferences




Logic

A logic is defined by the following:

Syntax - describes the possible configurations that constitute
sentences.

Semantics - determines what facts in the world the sentences refer to
i.e. the interpretation. Each sentence makes a claim about the world.

Proof theory - set of rules for generating new sentences that are
necessarily true given that the old sentences are true. The
relationship between sentences is called entailment. The semantics
link these sentences (representation) to facts of the world. The proof
can be used to determine new facts which follow from the old.

A set of sentences — A sentence is constructed from a set of primitives
according to syntax rules.

A set of interpretations — An interpretation gives a semantic to
primitives. It associates primitives with values.

The valuation (meaning) function — Assigns a value (typically the
truth value) to a given sentence under some interpretation. sentence
x interpretation - {True, False }



Knowledge Representation Using Logic

How logic can be used to form representations of the world? - All men
are Mortal:

Vx : Man(x) = Mortal(x)

How a process of inference can be used to derive new representations
about the world?

Marcus is a Man : Man(Marcus)
{Man(Marcus), Vx : Man(x) = Mortal(x) } derives Mortal(Marcus)

How these can be used by an intelligent agent to deduce what to do.



Approaches to Knowledge Representation

1. Representable adequacy = ability to represent all
knowledge needed in the domain.

2. Inferential adequacy = ability to manipulate
knowledge to drive new structures inferred from old.

3. Inferential efficiency =2 ability to perform inference in
the most efficient directions

d) Acquisitioned efficiency = ability to acquire new
information easily.



Knowledge Representation Techniques

Knowledge Representation
Techniques

Logical Semantic Production Frames

| Representation | Networks Rules . Representation



Knowledge Types

Declarative Knowledge = Concepts, facts, beliefs (that
are either true or false) are represented in the form of
logic. Describes what property /expresses facts.

Also called descriptive knowledge and expressed in
declarative sentences.

simpler than procedural language.
e Example = Kathmandu is capital of Nepal
= Capital _Nepal (Kathmandu)

Either Kathmandu is capital of Nepal or Madrid is capital
of U.K.

= Capital Nepal (Kathmandu) V Capital UK (Madrid)

e All Roman are Pompeians: Vx : Roman(x) = is_
Pompeian(x)



* Procedural/Imperative/Operational Knowledge—> a type of knowledge which
is responsible for knowing how to do something.

* Specifies what to do when

* ltincludes rules, strategies, procedures, agendas, etc.

* Procedural knowledge depends on the task on which it can be applied.

* Production rule [ (condition, action) pairs which mean, "If condition then
action”)] is commonly used technique to represent procedural knowledge

 Example Procedural Knowledge as Rules
* |F (at bus stop AND bus arrives) THEN action (get into the bus)

* Another example = Arranging the tiles of sliding block puzzle step by step
to reach a specified configuration

Heuristic KﬂOWlEdgeeknowledge related to specific domain

Used to make judgments and simplify solution to a problem.
They help achieve goals quickly.

Example > following the shortest path from city A to city B among many paths
between two cities.




Issues in Knowledge Representation

- Are there any attributes of object so basic that they
occur in almost every problem domain?

- Are there any imp relationships between attributes of
objects?

- At what level should knowledge be represented? Is
there good set of primitives into which all knowledge can
be broken down? Is it helpful to use such primitives?

- How should sets of objects be represented?

- given a large amount of knowledge stored in database
,how can relevant parts be accessed when needed.



Semantic Network = Another form of knowledge
Representation

Semantic networks are a way of representing relationships
between objects and ideas.

Also support automated systems for reasoning about the knowledge
In it nodes are objects, events , subjects and arcs are links or relations

For example, a Semantic network might tell a computer the relationship
between different animals (a cat IS A mammal, a cat HAS whiskers).

Vartebra Cat s = Fur
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Below is an example of a semantic network for the
following statements:
* Tom s a cat.

 Tom caught a bird.
 Tom is owned by John.
* Tom is ginger in colour.
* C(Cats like cream.

* The cat sat on the mat.
e Acatisamammal.

e A birdis an animal.
* All mammals are animals.

* Mammals have fur



Semantic Network = Advantages and Disadvantages

* Advantages of Semantic network:

* Semantic networks are a natural representation of knowledge.
* Semantic networks convey meaning in a transparent manner.
* These networks are simple and easily understandable.

Drawbacks in Semantic representation:

* Semantic networks take more computational time at runtime as we need
to traverse the complete network tree to answer some questions. It
might be possible in the worst case scenario that after traversing the
entire tree, we find that the solution does not exist in this network.

* Semantic networks try to model human-like memory (Which has 1015
neurons and links) to store the information, but in practice, it is not
possible to build such a vast semantic network.

* These types of representations are inadequate as they do not have any
equivalent quantifier, e.g., for all, for some, none, etc.

* Semantic networks do not have any standard definition for the link names.

* These networks are not intelligent and depend on the creator of the
system.




Frames

a record like structure which consists of a collection of attributes and its
values to describe an entity in the world.

Is similar to field-value structure corresponding slots and slot fillers
- It is a collection of slots and fillers that defines an objects

- Frame provides a third dimension representation of knowledge to
semantic nets by allowing nodes to have structures

Represent the given knowledge in frame 2

Peter is an engineer as a profession, and his age is 25, he lives in city
London, and the country is England. So following is the frame

Name Peter
Age 25
Profession Engineer
City London

Country England



Frames

Frames system consist of a collection of frames which are connected to each

other.

In the frame, knowledge about an object or event can be stored together in the

knowledge base.

The frame is a type of technology which is widely used in various applications
including Natural language processing and machine visions.
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Frames Advantages and Disadvantages

* Advantages of frame representation:

* The frame knowledge representation makes the programming
easier by grouping the related data.

 The frame representation is comparably flexible and used by many
applications in Al.

* Itis very easy to add slots for new attribute and relations.
e Itis easy toinclude default data and to search for missing values.
* Frame representation is easy to understand and visualize.

Disadvantages of frame representation:

* Inference mechanism cannot be smoothly proceeded by frame
representation.

* Frame representation has a much generalized approach.



Propositional Logic

* A propositional logic is a declarative sentence which
can be either true or false but not both or either.

All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.
3. 1+1=2.

4. 2+ 2 =3.

Propositions 1 and 3 are true, whereas 2 and 4 are false.

Consider the following sentences.

1. What time is it?

2. Read this carefully.
Jx+1=2

4 x+y=rc

Sentences 1 and 2 are not propositions because they are not declarative sentences,/Sentences 3

ositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign valuesto the variables.




Propositional Logic

* Propositional logic is a mathematical model
that allows us to reason about the truth or

false of logical expression.

* |n propositional logic, there are atomic
sentences and compound sentences (built up
from atomic sentences using logical

connectives)



Propositional Logic

Logical constants: true, false

Propositional symbols: P, Q, S, ... (atomic sentences)
Wrapping parentheses: ( ... )

Sentences are combined by logical connectives:

A ...and [conjunction]

V..or disjunction]

—=>...implies implication / conditional]
<..is equivalent [biconditional]

— ...not negation]

Literal: atomic sentence or negated atomic sentence



Propositional Logic

A simple language useful for showing key ideas and
definitions

User defines a set of propositional symbols, like P and Q.

User defines the semantics of each propositional symbol:
— P means “ltis hot”

— Q means “It is humid”

— R means “ltis raining”

Examples of PL sentences

P =“itis hot” and Q = “Itis humid.”
(PAQ)—R

“If it is hot and humid, then it is raining”

Q—>P
“If it is humid, then it is hot”



Well formed formula

* Asentence (well formed formula) is defined as
follows:
— A symbol is a sentence
— If Sis a sentence, then —S is a sentence
— If Sis a sentence, then (S) is a sentence

—If Sand T are sentences, then (Sv T), (SAT), (S—
T), and (S <> T) are sentences

— A sentence results from a finite number of
applications of the above rules



Additional Terms

* The meaning or semantics of a sentence
determines its interpretation.

e Given the truth values of all symbols in a
sentence, it can be “evaluated” to determine
its truth value (True or False).

* Amodel for a KB is a “possible world”
(assignment of truth values to propositional

symbols) in which each sentence in the KB is
True.



Additional Terms

A valid sentence or tautology is a sentence that is True under all
interpretations, no matter what the world is actually like or what the
semantics is. Example: “It’s raining or it’s not raining.”

An inconsistent sentence or contradiction is a sentence that is False under
all interpretations. The world is never like what it describes, as in “It’s
raining and it’s not raining.”

A compound proposition that is neither a tautology nor a contradiction is
called a contingency.

In below figure Because p V™p is always true, it is a tautology. Because p
A—p is always false, it is a contradiction.

Examples of a Tautology
and a Contradiction.

P =P Py -—p pA=p
F T F
F T T F

P entails Q, written P |= Q, means that whenever P is True, so is Q. In
other words, all models of P are also models of Q.



Logical Equivalence

Show that p — g and —p v g are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of —p v g and p — g agree, they are logically equivalent. <

TABLE 4 Truth Tables for —=p v g and
pP—q.

—p —pvyq p

T = = e
e I e o B I -
=5 =T
e e e M
= =7 =




Truth Table for Propositional Logic

A ...and ‘conjunction]
V ...or disjunction]
—>...implies  [implication / conditional]
<&>..is equivalent [biconditional]
— ...not [negation
o B == AVEB |[AAB A—B |A B
ik T F T T T ik
£k F F gk F F | 3
F T T T F T F
F F T F F T gk




CONVERSE, CONTRAPOSITIVE, AND INVERSE
The variations of Conditional Statements

Given a conditional statement p - g

The proposition g = p is called the converse

of p = q.

The contrapositive of p - g is the proposition
The proposition —p - —q is called the inverse of
p—q.

Out of these three conditional statements formed

from p = g, only the contrapositive always has
the same truth value as p = q.



Note p—>q can also be denoted in
below terms

“if p, then g~

“if p,q”

*“p 1s sufficient for g”
“gif p”

“g when p”

“a necessary condition for p 1s g~

“g unless —=p”

“p implies g~

“ponlyifg”

“a sufficient condition for g 1s p”
“g whenever p”

“g 1s necessary for p”

*g follows from p”



Converse, inverse and Contrapositive

What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?"

Solution: Because g whenever p™ is one of the ways to express the conditional statement
P — . the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is
“If the home team does not win, then it is not raining.”

The converse is
“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement.



Complex Sentences

A complex sentence:

P H Pwv H Pwv HiA—~H P HIA-H = P
Feil s Feilze Feilse Feilse Triie
Feilse Trre Traie Feilse Truee
Triic Fulse Trie Triwe Triie
Triic Thre Triue Feilzsc Trie




It’s important to know these relations in diagram and make sense with
sentences involving ALL, NONE, SOME, IF conditional and IFF
(Biconditonal) sentences

Models of complex sentences

P wvQ P ~Q

8 9

C
O




Inference

nference —Deriving new sentence from the old

n it when one asks a question of the knowledge
nase, the answer should follow from what has
been told to the knowledge base previously

i.e. one sentence follows from the sentences of
the knowledge. And hence we derive a new
sentence.

Logical inference is used to create new sentences
that logically follow from a given set of predicate
calculus sentences (KB).



Inference Soundness and
Completeness

* An inference rule is sound if every sentence X
produced by an inference rule operating on a
KB logically follows from the KB. (That is, the
inference rule does not create any
contradictions)

* Aninference rule is complete if it is able to
produce every expression that logically follows
from (is entailed by) the KB. (Note the analogy
to complete search algorithms.)



Syllogism

* A syllogism, (from the Greek words for conclusion
and inference,) is a logic puzzle where you draw
a conclusion =>from particular kinds of
purported facts you are given(knowledge Base )
and those facts alone.

* Syllogisms are an important basis of logical
thinking.

Src:https://teachinglondoncomputing.org/sherlock-
syllogisms/



https://teachinglondoncomputing.org/sherlock-syllogisms/

Example =2 Syllogism

All gems in the game are expensive in-game
purchases.

All rubies in the game are gems.

 Therefore which of the following can we
conclude?

* a.Some rubies in the game are expensive in-
game purchases.

* b. All rubies in the game are expensive in-game
purchases.

* c. Some gems in the game are expensive in-game
purchases.

 d. None of the above.



Rules OF Inference

Kule of Fnference

Tanrology
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State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is either below freezing or raining now.™

Soluticon: Let p be the proposition “Tt is below freezing now™ and g the proposition “Tt is raining
now.” Then this argument is of the form

fal
.V g
This is an arcument that uses the addition rale.

State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.™

Solution: Let p be the proposition “It is below freezring now.” and let ¢ be the proposition ““It is
raining now.” This argument is of the form

P Ag
P

This arcument uses the simplification rle.

State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today.
then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a

barbecue toOmoOrrow:.

Solution: Let p be the proposition ““It is raining todav.” let ¢ be the proposition “We will not
have a barbecue today.” and let » be the proposition “We will have a barbecue tomorrow.”” Then
this argument is of the form

Hence. this arcument is a hypothetical syllogism.



1. A. Knowledge base (KB) consists of set of statements.
B. Inference is deriving a new sentence from the KB.
Choose the correct option.

a) Ais true, B is true

b) A is false, B is false

c) Ais true, B is false

d) A is false, B is true

2. Which is not a property of representation of knowledge?
a) Inferential Efficiency
b) Inferential Adequacy

c) Representational Adequacy
d) Representational Verification

3. Inference algorithm is complete only if
a) It can derive any sentence

b) It can derive any sentence that is an entailed version
c)

d)

It is truth preserving
It can derive any sentence that is an entailed version & It is truth

preserving



4. All of the following is true about logic except:

a) Concise

b) Unambiguous

c) context insensitive

d) Expressive

e) effective for inferences

f)  None

5. Which of the following is false?

a) “All Roman are Pompeians” is declarative knowledge.

b) If | feel cold then | get a glass of hot water is procedural knowledge.

c) Getting from city A to city B with some pre determined information is not
heuristics.

d) None
6. ‘a |= B ‘(to mean that the sentence a entails the sentence B) if and only if, in
every model in which a is B is also

a) True, true

b) True, false
c) False, true
d) False, false



7. Choose the correct option:

a)

b)

d)

A formal language is required to represent knowledge in a computer
tractable form and reasoning processes are required to manipulate this
knowledge to deduce non-obvious facts.

Semantics describes how sentences are formed in the language and Syntax
describes the meaning of sentences, what is it the sentence refers to in the
real world.

Syntax describes how sentences are formed in the language and Semantics
describes the meaning of sentences, what is it the sentence refers to in the
real world.

aandc



CNF

Conjunctive normal form(CNF): A sentence 1s wriften in

(AVB —C) A(BVD) A(— A) A(B vO)

(AvB —C) 1s a clause
Its outermost structure is comjunction. It’s a conjunction of
multiple units.these unit called ““clauses™

A clause is the disjunction of many things. The unit that make
up a clause are called literals. A Iiferal is either a variable or

negation of vanable . “‘"‘\-—-_‘__1_\______

Ex. AB.—C are literal

You can take any sentence in propositional logic write it in
conjunctive normal form(CNF).




3 Disjunctive and Conjunctive Normal Forms

The rules given in the previous section (such as De Morgan’s) allow us to transform propositional
formulas (expressions) to equivalent formulas. In this lecture, we will see two “standard forms”
that can represent every propositional formula.

Definition 1. A propositional formula is in disjunctive normal form (DNF) if it is the disjunction of
conjunctions of literals.

On its own, this definition may seem somewhat cryptic, so we explain each term below:
e A literal is a Boolean vanable, or the negation of a Boolean variable (e.g., P, ~P).
e A comjunction is a logical formula that is the AND (A) of (smaller) formulas (e.g., P A ~Q A R)

e A disjunction is a logical formula that is the OR (V) of (smaller) formulas (e.g., P v -Q Vv R).

With this in mind, the meaning of DNF should be clearer: a DNF formula is an OR of AND's. For
example,
X=(AA-BA-D)V(BAC)V(CA-DAE)

is a DNF formula: the literals of X are A, ~B, ~D, B,C, ~D, and E; the conjunctions are A A ~B A
=D,BAC, and C A -D A E; and X is the disjunction (OR) of these three conjunctions. On the other
hand,

Y=(Av-B)A(BvCvV~D)

is not a DNF formula, because the structure of the operators is inverted. But this formula is in the
other “standard” form (CNF) for propositional formulas.

Definition 2. A propositional formula is o conjunctive normal form (CNF) if i is the comjunction of
disjunctions of literals. 6
As noted above, Y ks a ONF formula because it is an AND of OK's. The Nteralsof Y are A, -8, B, C,

and —D; the disjunctions are (AV -B)and (BVCV-D); and Y s the conjunction (AND) of the
two disjunctions,




Convert to CNEF:

1. Eliminate arrows using definitions..
A-2>B=—-AvB

1. Drive negation using de Morgan's Law

—(AvB)=-An—-B
—(AAnBFE-Av-B
3. Distribute OR over AND

Av(BACl==(AvB)An(AVvC)
Every sentence can be converted to CNF, but it may grow exponentially in size.
Ex.

(AvB) >(C =>D)
—~(AvB)v(=CvD)

(A A—-B)v {—C Vv D}
(mAV-CvDIA(=Bv—=CvD).oevvirennnnn CNF



4\66 O (A
Resolution

Resolution technique uses proof by contradiction and is

based on the fact that any sentence in propositional logic can

—

be transformed into an equi i conjunctive

normal form .The resolution rule yields a sound and

complete algorithm for deciding the satisfiability of a
propositional formula

The resolution procedure 1s a simple iterative procedure: at
each step . two clauses. called the parent clauses, are
compared(resolved). vielding a new clause that has been
mferred from them The new clause represent that two parent

clauses iteract with each other.



Resolution: Propositional Form

Once sentences are in clausal form. we can apply the resolution
inmference process.

Omne rule 1s enough.

Given two clauses. this process is:

1. Find two complementary terms (e.g.. A and — A) in the two
clauses.
2. cancel them

3. form a new clause containing all the remaining terms.
e.g. resolving

D> B G

— X VA

XA

which 1s a valid deduction.

Conjunctive Normal Form(CNF)

In propositional logic, the resolution method is applied only to those clauses which are disjunction of literals. There are

following steps used to convert into CNF:

1) Eliminate bi-conditional implication by replacing A < B with (& — B) A (B —A)
2) Eliminate implication by replacing A — B with -A\ B.

3) In CNF, negation(—) appears only in literals, therefore we move it inwards as:

« = [ —=A)=E A (double-negation elimination
= = (AAB)E(-AV -B)(De Morgamn)
= =(AV B)=(-AA-B)(De Morgan)

4) Finally, using distributive law on the sentences, and form the CNF as:
(Aq V By) A (AxV Ba) A .... A(A,V B,).

Mote: CNF can also be described as AND of ORS



Steps for Resolution:

Conversion of facts into propositional logic

Convert propsitional statements into CNF if needed

Negate the statement which needs to prove (proof by contradiction)
Draw resolution graph (unification)

Consider the following Knowledge Base:

1. The humidity is high or the sky is cloudy.
2. If the sky is cloudy, then it will rain.

3. If the humidity is high, then itis hot.

4. It is not hot.

Goal: It will rain.
Use propositional logic and apply resolution method to prove that the goal is derivable from the given knowledge base.
Solution: Let's construct propositions of the given sentences one by one:
1. Let, P: Humidity is high.
Q: Sky is cloudy.
It will be represented as PV Q.
2) Q: Sky is cloudy. ..from(1)
Let, R: It will rain.
It will be represented as bQ — R.
3) P: Humidity is high. ...fromi(1)
Let, S: Itis hot.

It will be represented as P — 5.



A) =5S: It is not hot.

Applying resolution method:
In (2), Q@ — R will be converted as (—-—Q VvV R)
In (2), P — S will be converted as (=P WV S)

Megation of Goal (—=R): It will not rain.

Finally, apply the rule as shown below:

PV Q -V R
\/
PV R —-PWV 5
\/
RWVS =5
\/
R —-R

@GN ull)



Resolution

Converted to Clause

Sl. No Given Axioms Form
1 P P

2 {(PAQ) 2> R -PVYQVR
3 (SVT) => Q -svaQ

a4 -1 Y-

S T 3
—Pv—OQVR —aR.



Problems with Propositional Logic

Hard to identify “individuals” (e.g., Mary, 3)

Can’t directly talk about properties of individuals or
relations between individuals (e.g., “Bill is tall”)

Generalizations, patterns, regularities can’t easily be
represented (e.g., “all triangles have 3 sides”)

First-Order Logic (abbreviated FOL or FOPC) is
expressive enough to concisely represent this kind of
information

FOL adds relations, variables, and quantifiers, e.g.,

» “Every elephant is gray”: ¥V x (elephant(x) - gray(x))
* “There is a white alligator”: 3 x (alligator(X) » white(X))



First-order logic (FOL)

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from other objects
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there is only
one “value” for any given “input”

 Examples:

— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend, second-half, one-more-than ...



FOL Syntax: Basic

« A term is used to denote an object in the world
— constant: Bobsmith, 2, Madison, Green, ...
— wvariable: x, v, a, b, <, ...
— function(term,, ..., texrm,):
e.g.,.Sqrt(2), Distance (Madison, Milwaukee)
= is a relation for which there is one answer

* maps one or more objects to another single object

« can be used to refer to an unnamed object:
e.g., LeftLegOf (John)

* represents a user-defined functional relation
« cannot be used with logical connectives

« A ground term is a term with no variables

« An atom is smallest expression
to which a truth value can be assigned
— predicate(term,. ..., term, ):
e.g., Teacher (John, Deb), =(sSgrt(2), sSgrt(7))
« is a relation for which there may be more than one answer

« maps one or more objects to a truth value
= represents a user defined relation

— ferm,; = terms,:
egc., Incomse (John) = 20K, 1 = 2

= represents the egquality relation when two terms refer to the
same object

* is a predicate in prefix form: =(term,;. term,)



FOL Syntax: Basic

- A sentence represents a fact in the world
that is assigned a truth value
— atorm

_— C-Dr‘np-lex sentence I_,ISir‘lg cOonNnnectives: A W — — <—>
eg., Friend(Deb ,  Jim) — Friend(Jim, Del)
eg., >(11 ,22)) nn =(22_, 33)

— complex sentence using guantified variables: % -

FOL Semantics: Assigning Truth

= The atom predicate(termm,;. .... termm_) is true
iTF the objects referred to by terin;. .... termm
are in the relation referred to by the predicate

- What is the truth value for (D, J) ¢

— model:
objects: Deb, Jirm, Suse, Bob
relaticom: Friend {<Deb, Sue>,<Swue, Delb>}
— interpretation:
D meaeans Deb, J mearns JimMm, S means Suse, B meaeans Bolb
F{iterm, term-.) means term, is friend of term,



FOL Syntax: Quantifiers

Universal quantifier: vV<variable> <sentence:>

= PMeans the sentence is true for all values of x in the

domain of variable x

= MNMain connective typically — forming if-then rules

— _AXT Freerrrerrrs dre mrrexrre it erfs becomes in FOL
W Huume=ar () —> Mommom=s 1 {3 )
i.e., for all x, if x is a human then x is a mammal

— MNMiammals mmust have fu11 becomes in FOL

W Mamm=al (=) —> HasFuxr ()
for all . if x is a rmarmmal then ~ has fur

Al (Hiuuman (x) — Mammal () )

Equivalent to the conjunction of instantiations

of x:
(Human (Jim) — Mammaad (TJim) ) s
(Human (Delb) —— Mammal (Delo ) ) At
(Humanrn ( Z222) — Mammal (222) )] AN oo



All humans are mammals :
Vx (Human(x) >mammal(x)) correct form
not Vx (Human(x) A mammal(x)) incorrect form as described below

FOL Syntax: Quantifiers

* Common mistake is to use A as main connective

— results in a blanket statement about everything

* Forexample: Vx (Human (x) A Mammal (x))

— (Human (Jim) A Mammal (Jim)) A
(Human (Deb) A Mammal (Deb)) A
(Human (22) A Mammal (22) ) A2 ..

— means everything is human and a mammal



FOL Syntax: Quantifiers

Existential quantifier: d<variable> <sentence>

* Means the sentence is true
for some value of x in the domain of variable x

* Main connective is typically A

—Some humans are old becomes in FOL
— dx Human (x) A 01d(x)

there exist an x such that xis a human and x is old
—Mammals may have arms. becomesin FOL

— dx Mammal (xX) A HasArms (x)
there exist an x such that x is a mammal and x has arms

—A=< (Human (<) ~ Ol1lJ4d (=) )

= Equivalent to the disjunction of instantiations
of x:
(Human (Jim) ~ <O1ld (Jim) ) N
(Human (Delos) A Old (D=l ) ) N
(Human (=Z22) A OoOld(z22=2) ) S



Some humans are old.
Ax(Human(x) A\ old(x)) correct form
Ax(Human(x) ) — old(x)) in correct form as described below

Common mistake is to use — as main connective

— results in a weak statement

For example: dx (Human (x) = 01d(x))

— (Human (Jim) — 0ld(Jim)) v
(Human (Deb) — 01ld (Deb)) v
(Human (22) — 01d(22) ) v..

— true if there is anything that isn't human



FOL Syntax: Quantifiers

= Properties of quantifiers:
— YWx Vv is the same as Vv Vx
— Ax AdAw is the same as dyv dx
— note: dx dv can be written as dx,v likewise with WV

- Examples
— VWx Vv Likes (x,v) is gctive voice:
Evervone likes everyvone.
— YWy WVx Likes (x,WvV) is passive voice:
Evervone i1s liked by everyvone.

* Properties of quantifiers:

— Wx dv is not the same as dyv Vx
— dx Vv is not the same as Vy dx

 Examples
— Vx dyv Likes (x,Vv) is active voice:
Evervone likes someone.
— dvwv Vx Likes (x,Vv) is passive voice:
Someone 1s liked by evervone.



FOL Syntax: Quantifiers

- Properties of gquantifiers:

— N3 P (=) is the same as —3dx —P (=)
— d= P (x) is the same as —WVx —P (=x)
# Ganeral Identites

- Examples
— Wx Likes (x, IceCream) P e R
Evervone likes ice cream. - VAP -3 P

— —dx —Likes (x, ITceCream)
No one doesn't like ice creai.

It's a double negative!l

WP = Svx-P

=% Px)alix) = VaPx) » ¥xiix)
=3 P vOix) e 32Px) + 3n0(x)

- Properties of quantifiers:
— Wax@ P (xx) when negated is Ax —P (3x)
— dAdxx P (x) when negated is Y2x —P (3x)

- Examples
— Wxr Likes (x, TceCiream)
Evervone likes ice cream.
— dx ——Likes (x, TceCiIreaim)
Someone doesn't like 1ce creain.

— This is from the application of de Morgan's laww
to the fully instantiated sentence



FOL Syntax: Basics

» A free variable is a variable that isn't bound by

a quantifier

— dy Likes (x,Vy)

X is free, y is bound

A well-formed formula is a sentence where
all variables are quantified

Summary so Far

* Constants:

* Functions:

* Predicates:
» Variables:

* Connectives:
* Equality:

* Quantifiers:

Bob, 2, Madison, ...
Income, Address, Sqrt, ...
Sister, Teacher, <=, ...
X,V¥,a,b,c, ..

ANV o = <=

vV



Term: Constant, variable, or Function(term,, ..., term_)

denotes an object in the world
Ground Term has no variables

Atom: Predicate(termy, ..., term,), term, = term,,
Is smallest expression assigned a truth value

Sentence: atom, quantified sentence with variables or

complex sentence using connectives is assigned
a truth value

Well-Formed Formula (wff):
sentence where all variables are quantified

Funm with Sentences

Convert the following English sentences into FOL

o Bob is a fAsh.
— What are the objects™
Bol

— 'WWhat are the relations 7
is a fish

AnNnswer: Fish (Bok) a unary relation or property
e IDeb and Suae are wolimnen. we'll be casual about plurals
e IDeb or Sue ism't a plant. ambiguous?

e el amd Stuae are friemds. use a function? predicate?



Fun with Sentences

Convert the following English sentences into FOL

e America bought Alaska from Russia.
— VWhat are the objects™?
Amenca, Alaska, Russia
— What are the relations?
bought{who, what, from) — an m-ary relation where nis 3
Answer: Bought (America, Alaska, Russia)

e Jim collects evervthing.
— What are the variables™
everything =
— Howw are they quantified™
all, universal
AnNnswer: wx Collects (Jim, x)



Fun with Sentences

When to restrict the domain, e.g., to people:

« All: - “ax (Person(x)A...)—..

— things: anything, everything, whatever

— people: anybody, anyone, everybody, everyone, whoever

» Some (at least one): dx Person (x) ... ..

— things: something

— people: somebody, someone

» MNone: — s Person () A ... A

—

— things: nothing
— people: nobody, no one

e Somebodyv collects something.

— What are the variables™
somebody x and something v
— How are they quantified?
at least one, existential
Answer: dx,v Perscni(x) A Collect=s(x,w)



Convert the following English sentences into FOL

e Nothing collects anvthing.

— What are the variables and quantifiers™
nothing = and anything s
not one (i.e_, not existential) and all (universail)

Answer: —3dx Yy Collects (x,vy)
— Equivalent™?
Everyvthing does not collect anyvthing.
AnNnswer: vx,y —Cocllects(x,v)

o All hoarders collect evervithing.
— How are ideas connected™?
being a hoarder implies collecting everything
AnNnswer: Wx,v Horder (x) — Collect=(x,%vw)



Fun with Sentences

Convert the following English sentences into FOL

e All stinky shoes are allowed.

How are ideas connected?
being a shoe and stinky implies it is allowed
AnNnswer: vx (Shoe (x) A Stinky(x)) = Allowed(x)
e No stinkyv shoes are allowed.
Answer: —-dx sShoe (=) ~ Stinkv(x) ~ Allowed(x)
Equivalent (carry negation through)?

(Aldl) Stinky shoes are not allowed.
AnNnswer: vWx (Shoe(x) A~ Stinky(x)) == —Allowed(x)

= this negative of abowve?

Anv good amateur can beat some professional.

1. vx [ (x 1s a good amateur) =
(x can beat some professional) ]

(- {L 2 (x can beat some professional) becomes
Jv [ (v 1s a professional) A (x can beat ) ]
[ (Amateur (x) A GoodPlayer (x)) =
dv (Professioconal(y) ~ Beat(x,wv))]

AnNnswer: vx



Inference Rules for FOL

may be
many ways
to do this!

Universal Elimination (UE)
variable substituted with ground term

Vx Eats(Jim, x) infer Eats(Jim, Cake)

Existential Elimination (EE)

Vv o
— SUBSI(vgl, o)

variable substituted with a new constant dv o
, _ , SUBST(\V/K}, @)
3x Eats(Jim, x) infer Eats(Jim, NewFood)

-

kis a new term }

These two inference rules enable “»
the knowledge base to be propositionalized

Then natural deduction can be done using
inference rules for PL



Unification:

A unifier of two atomic formulae is a substitution of terms for variables that makes them
identical.

- Each variable has at most one associated term

- Substitutions are applied simultaneously

Unitfier of P(x. f(a). z) and P(z. z. u) : {x/ f(a). z/ f(a). u/ f(a)}

We can get the inference immediately if we can find a substitution a such that King(x) and
Greedy(x) match King(John) and Greedy(y)

a = {x/John,y/John} works

Example:
e Anything anyone eats and not killed is food.
e Anil eats peanuts and still alive
e Harry eats everything that Anil eats.
e John likes all kind of food.
e Apple and vegetable are food
¢ Prove by resolution that:

e John likes peanuts.



Step-1: Conversion of Facts into FOL

we'll start by converting all of the given propositions to first-order logic.

a. Wvx: food(x) = likes{John, x)
b. food{Apple) A food({vegetables)

c. Wx Wy: eats(x, y) N — killed(x) = food(y)

d. eats (Anil, Peanuts) A alive{Anil).

e. Wx:eats(Anil, x) = eats{Harry, x)

f. W — killed(x) = alive(x) added predicates.
g. Wx: alive(x) —»— killeclljxj}

h. likes(John, Peanuts)

Step-2: Conversion of FOL into CNF

Converting FOL to CNF is essential in first-order logic resolution because CNF makes resolution proofs easier.
* Eliminate all implication (—) and rewrite:
1. ¥x - food(x) V likes{John, x)
2. food(Apple) A food(vegetables)
3. ¥x ¥y - [eats(x, y) A = killed(x)] V food(y)
4, eats (Anil, Peanuts) A alive(Anil)
5. ¥x — eats(Anil, x) V eats(Harry, x)
6. Wx- [- killed(x) 1V alive(x)

7. %Wx = alive(x) WV - killed(x)
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* Rename variables or standardize variables
1. ¥x — food(x) V likes(John, x)
2. food(Apple) A food(vegetables)
3. Vy ¥z - eats(y, z) V killed(y) V food(z)
4. eats (Anil, Peanuts) A alive(Anil)
5. ¥x — eats(Anil, x) V eats{Harry, x)
6. ¥x —killed(x) 1 V alive(x)
7. %Wx = alive(x) V - killed(x)
8. likes{John, Peanuts).

* Eliminate existential instantiation quantifier by elimination.
We will eliminate existential quantifiers in this step, which is referred to as Skolemization. However,
because there is no existential quantifier in this example problem, all of the assertions in this phase will be
the same



e Drop Universal quantifiers. We'll remove all universal quantifiers 3 in this phase because none of the
statements are implicitly quantified, therefore we don't need them

1. - food(x) V likes(John, x)

2. food(Apple)

L

. food(vegetables)

4. - eats(y, ) V killed(y) V food(z)

LN

. eats (Anil, Peanuts)

6. alive(Anil)

7. = eats(Anil, w) V eats(Harry, w)
8. killed(g) V alive(g)

9. = alive(k) V - killed(k)

10. likes(John, Peanuts).
[ Note: Statements "food(Apple) A food(vegetables)” and "eats (Anil, Peanuts) A alive(Anil)”
can be written in two independent statements. ]

e Distribute conjunction A over disjunction =. This step will not make any change in this problem.



Step 3: Reverse the statement that needs to be proven.

We will use negation to write the conclusion assertions in this statement, which will be written as "likes” (John,
Peanuts)

—likes{John, Peanuts) — food(x) V likes{lohn, x)

\ / {Peanuts,/x}

— food(Peanuts) — eats(y, z) V killed(y) V food|(z)

\ / [Peanuts/z}

— eats(y, Peanuts) V killed(y) eats (Anil, Peanuts)
{anilfy}

Killed(Anil) — alive(k) V — killed(k)

\ / {Anil/k]
— alive(Anil) alive(anil)

{ } Hence proved.

As a result, the conclusion’s negation has been demonstrated to constitute a total contradiction with the given
collection of truths.



Translate each of these statements into logical expressions
using predicates, quantifiers, and logical connectives.
Let P(x) be “x is perfect”; let F(x) be “x is your friend”; and

let the domain be all people.

a) No one is perfect = everybody isn’t perfect
Vx —P(x)

b) Not (everyone is perfect).

—(Vx P(x))

c) All your friends are perfect.

Vx(F(x) - P(x))

d) At least one of your friends is perfect.
Ax(F(x) \ P(x))

e) Everyone is your friend and is perfect.
Vx(F(x) \ P(x)) or (Vx F(x)) \ (Vx P(x))

f ) everybody is not your friend or someone is not perfect.
(Vx — F(x))) V (Ax —P(x))



Towards Resolution for FOPL :

- Based on resolution for propositional logic

- Extended syntax: allow variables and quantifiers

- Detfine —alusal form™ for first-order logic formulae (CNF)

-  Eliminate quantifiers from clausal forms

- Adapt resolution procedure to cope with variables (unification)

Conversion to CNF:

1. Eliminate implications and bi-implications as in propositional case
2. Move negations inward using De Morgan‘s laws

plus rewriting " ¥xPas 3x " Pand 7 dxPas ¥Vx P

3. Eliminate double negations
4. Rename bound variables if necessary so each only occurs once

e.g. VxP(x)v3IxO(x) becomes VxP(x)vIyvO(y)
5. Use equivalences to move quantifiers to the left
e.g. VxP(x)AQ becomes Vx (P(x)AQ) where x 1s not in O
e.g. VxP(x)A3yv0O(y) becomes VxIy(P(x)AO(V))
6. Skolemise (replace each existentially quantified variable by a new term)

JxP(x) becomes P(ao) using a Skolem constant ao since Jx occurs at the outermost level



Resolution in FOPL cntd..

¥x3vP(x, ¥) becomes P(x, fo(x)) using a Skolem function f0 since 3y occurs within ¥x
7. The formula now has only umiversal quantifiers and all are at the left of the formula: drop them
8. Use distribution laws to get CINF and then clausal form

Example:
1) ¥x [VeP(x. y)— " Wu(O(x. v)—=R(x. v))]

Solution:
1. Wx [ 7 WeP(x, y)v = V(7 Qx. y)VR(x. v))]
. 3.9 [3y 7 Plx, y)vIy(Ox. y)n 7 Rix. y))]
Wx [Fy 2 Plx. y)vIz (Ox. z2)n " R(x. 2))]
Wxdy3z [ Plx, yWI(O(x, z)a 7 R(x. z))]
S [ P ()v(Q (. glx))n — R(x. g(x)))]
7 Plx. £ x)v(O(x. g(x))n 7 R(x. g(x)))
APl v g(x))In( = Pl f (x))v = R(x. g(x)))
A7 Pl f)vO(x. g(x)). ~ Plx. f(x))v 7 Rix. g(x))}

2
4

G =l v LA



Resolution in FOPL cntd..

2. 7 3xWWE (PO vO(z))—(Plx)vO(x)))

Solutiorn.:

. FxVoNz ( (PO IvO() P (x v O(x))

. W 2NNz (2 (PO v () v P (x)vO(x))

- Wy Wz (PO IvO() P (x v O(x))

- Wady3z 7 (2 (PO (=) P )v O(x))

- WadyIz (PO (=) = (Pl v O(x)))
- (PO (e(x))n = Plx)a = Q(x))
(2 v (= () = Plxc)n = ONx)

- AP PIv(=(xx)). T Plx). ™ Q)

SRR SR SR PR PR



Statistical Reasoning
(The Bayesian Way)

Probabilistic Logic Learning

Probabilistic Approach to Uncertainty

O Logic agents almost never have access to the whole truth about their environment.

O There will always be questions to which a categorical answer (i.e., TRUE of FALSE)
cannot be found.

O  Will try to apply probability theory to deal with degree of belief about things.
Probability Logic

Learning



Bayes Theorem

O We have that P(A,B) = P(A|B) P(B) = P(B|A) P(A) and therefore we can remove the
joint probability to find that:

P(A|B) = P(B|A) P(A) / P(B).

O Called Bayes' Theorem and provides a way to determine a conditional probability
without the joint probability of A and B.

Common to think of Bayes’ Theorem in terms of updating our belief about a
hypothesis A in the light of new evidence B.

m  Specifically, our posterior belief P(A[|B) is calculated by multiplying our prior
belief P(A) by the likelihood P(B[A) that B will occur if A is true.

In many situations it is difficult to compute P(A|B) directly, yet we might have
information about P(B|A).

m  Bayes' Theorem enables us to compute P(A|B) in terms of P(B|A).

®  This is what makes Bayes' Theorem so powerful.



Chain Rule

O Recall that P(A,B) = P(A|B) P(B).
O Can extend this formula to more variables.
O Example: For 3-variables:
PABC)=P(A| BC)P(BC)=P(A|BC)P(B|C) P(C)
O Example: For n-variables:
P(Al, A2, ..., An) = P(Al]| A2, ..., An) P(A2]| A3, ..., An) P(An-1|An) P(An)

In general we refer to this as the chain rule.
This formula provides a means of calculating the full joint probability distribution.

This formula is especially significant for Bayesian Belief Nets where/when many
of the variables are conditionally independent (and the formula can be simplified.



Independence and Conditional Independence

O Two events are independent if P(A * B) = P(A) P(B).

O If both events have a positive probability, then the statement of independence of
events is equivalent to a statement of conditional independence:

P(A|B) = P(A) if and only if P(B|A) = P(B) if and only if P(A * B) = P(A) P(B)

O Can think of independence in the following way: knowledge that one event has
occurred does not change the probability assigned to the other event.

Independence

Age and Gender are

independent.

P(A,G) = P(G)YP(A)

P(AIG) = P(A) AL G

P(G|A) = P(G) G LA

P(A,G) = P(G|A) P(A) = P(G)HIP(A)
P(A,G) = P(A|IG) P(G) = P(AP(G)



Bayesian networks

A simple graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

Syntax:
B aset of nodes, one per variable
B adirected, acyclic graph (link # "directly influences")

B qa conditional distribution for each node given its parents:
P (X;| Parents (X;))

In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over X for each combination of
parent values



Conditional Independence

Cancer is independent of Age
and Gender given Smoking.

P(C|A,G,S) =P(C|S) CLAG]|S



More Conditional Independence:

Naive Bayes

Serum Calcium and Lung Tumor
are dependent

Serum Calcium is independent
of Lung Tumor, given Cancer

P(L|SC,C) = P(L|C)



Bayesian Network(Directed Acyclic
Graph =2 DAG)

Put it all fogether

P(A.G.E.S.C.L,SC) =
P(A)- P(G)-

P(E|A)-P(S| 4,G)-

P(C|E,S)-

P(SC|C)-P(L|C)




Example

O I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set of f by minor earthquakes. Is there

la}

burglar?

O Variables: Burglary, Earthguake, Alarm, JohnCalls, MaryCalls

O MNetwork topeology reflects "causal" knowledge:
- A burglar can set the alarm off
[ An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
P(B) PE)
001 Earthquake 002
B E P(AJ'B,E} The joint probability distribution for the above networlk is given by:
T T .93 PJMABE) = P(J*M*A"B"E)=PF(B) * P(E) * P(A | B, E) * P(J|A) * P(M|A)
T F 94
F T 29
F F 001
A [ P(MIA)
F 05 F 0Ol




P(B)

Earthquake

B E | PAIB.E)
T T .95

T E .94

F T 29

F F OO L

PCVILA)

70

A
38

m A
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The joint probability distribution for the above network is given by:
P(JM.AB.E) = P(J"M"A"B~E)=P(B) * P(E) * P(A | B, E) * P(J|A) * P(M|A)
What is the probability that the
alarm has sounded but neither a

burglary nor an earthquake has

occurred, and both John and Merry

call? PAmAaan—-ba—e) =P(j| a)P(m | a) P(a | =b, —e) P(—b) P(—e)
=0.90 x 0.70 x 0.001 x 0.999 x 0.998
= 0.00062



P(B)

B E PAIB,E)
T T 95

T E .94

E T 29

F F OO L

™E)

Earthquake

A
S HE
||.= oS

What is the probability of john calling mary ?

P(j)=P(jla)*P(a)+ P (j| ~a)* P (—a)

002
A | POVILA)
F Ol

= P(j |a)* [P(a | b, e)* P(b ,e)+ P{a]| —b, e)* P(—b, e) + P(a| b, —e)* P(b, —e) +
P(a] —b, —e)* P(—b, —e) 1+ P(j]—a)* [P(—a] b, €)* P(b, ) + P(—a| —b, e)* P(—b,
e)+ P(—a| b, —e)* P(b, —e) + P{(—a|—b, —e)* P{—b, —e)]

= 0.90%0.00252 + 0.005*%0.9974 =0.0521
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What is the probability of john calling mary ?

P()=P(la)*P(a)+ P (j|—a)* P (—a)

=P(j |a)* [ P(a | b, e)* P(b,e) + P(a] —b, e)* P{—b, ) + P(a| b, —e)* P(b, —e) + P(a| —b, —e)*
P{—b, —e)]+ P(j| -a)* [P(—a]| b, e)* P(b, &) + P(—a|—b, e)* P(—b, ) + P(—a| b, —e)* P(b, —e)
+ P(—a|—b, —e)* P(—b, —e] ]

Note 2 Where P (b, e) = P (b)*P (e) since BandE are

independentevents from the graph networks
P(al] b,e)=0.95
P(—~a|b,e)=1-P(a |b, e) =1-0.95 =0.05

P(—al|b, me)=1-P(a| b, —we)=1-0.94 =0.06
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