Part 2




Problem solving through search

* |n which we see how an agent can find a
sequence of actions that achieves its goals
when no single action will do.

* Problem solving is a agent based system that
finds sequence of actions that lead to
desirable states from the initial state.



. Problem-solving agents
More details on “states” soon.

Problem solving agents are goal-directed agents:

1. Goal Formulation: Set of one or more (desirable)
world states (e.g. checkmate in chess).

2. Problem formulation: What actions and states to
consider given a goal and an initial state.

3. Search for solution: Given the problem, search for a
solution --- a sequence of actions to achieve the goal
starting from the initial state.

4. Execution of the solution

Note: Formulation feels somewhat “contrived,” but was meant
to model very general (human) problem solving process.



Formulate goal: Example: Path Finding problem

— be in Bucharest
(Romania)

Formulate problem:
— action: drive between
pair of connected cities
(direct road)

— state: be in a city
(20 world states)

Find solution:
— sequence of cities

leading from start to )

goal state, e.g., Arad, Environment: fully observable (map),

Sibiu, Fagaras, deterministic, and the agent knows effects

Bucharest of each action. Is this really the case?
Execution Note: Map is somewhat of a “toy” example. Our real

— drive from Arad to intevest: Exponentially large spaces. with e.g. 107100
ﬁl‘;‘:‘{ﬂ;ﬁ;ﬂ"m"d‘“g o or more states. Far beyond full search. Humans can
often still handle those!

One of the mysteries of cognition.



State space: the set of all states reachable from

the initial state by any sequence of actions

Formalizing Search

A search problem has five components:

hWN =

S, I, G, actions, cost

State space S : all valid configurations
Initial states I < S: a set of start states /= {(FCDS,)} < 5
Goal states G < S: a set of goal states G = {(,FCDS)} = 5

An action function successors(s) = S : states
reachable in one step (one arc) from s

successors((FCDS,)) = {(CD,FS)}
successors((CDF,S)) = {(CD,FsS), (D,FCS), (C,FSD)}

A cost function cost(s, s’ ): The cost of moving from
s to s’

The goal of search is to find a solution path from a
state in / to a state in G



1. All of the following are true except:

 A. A Stateis a representation of all necessary
information about the environment

* B. A state captures all the relevant information
e C. A state captures all the information

 D. The number of actions needed depends on
how the world states are represented

2. An action is also known as :
A. Operator

B. Move

C. BothAandB

D. All of above



A well defined problem consist of

e A. Initial state, actions, and transition model,
* B. Goal test

e C. Path Cost

 D. All of the above

A successor is

* A. any state reachable from a given state by a
single action.

* B. set of all state reachable from a given state
* C.None

e D. All of the above



Abstraction

For a taxi driving the state of the world includes so
many things:

the traveling companions,
the current radio program,

the scenery out of the window, the proximity of law
enforcement

officers, the distance to the next rest stop, the
condition of the road, the weather, and so on.

All these considerations are left out of our state
descriptions because they are irrelevant to the
problem of finding a route to Bucharest. Hence many
things are abstracted




The process of removing detail from a
representation

* A. Encapsulation
* B. Polymorphism
* C. Abstraction

* D. Goal Test



State Space
State Space = A Directed Graph
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e In general, there will be many generated, but un-
expanded, states at any given time during a search

e One has to choose which one to "expand” next



Frontier —The set of all nodes that are
available for expansion

Different Search Strategies
Q The generated, but not yet expanded, states

define the Frontier (aka Open or Fringe) set

The essential difference is, which state in the
Frontier to expand next?




The essence of any Search strategy is 2 Which path to follow or
which frontier node to expand 2> depending on it we have
various search algorithms and it’s the essence of any search
algorithm-Below search strategy is the Bread First Search (BFS)

Searching for a solution
to the 8-puzzle.
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A breadth-first search tree. (More aerau soon.)




Observe the state space in below figure

Example: Vacuum world state space graph
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this set of states)

states? The agent is in one of 8 possible world states.
actions? Left, Right, Suck [simplified: left out No-op]

goal test? No dirt at all locations (i.e., in one of bottom two states).
path cost? 1 pey action

Minimum path from Start to Goal state: 3 actions
Alternative, longer plan: 4 actions

Note: path with thousands of steps before reaching goal also exist.



In a vaccum world which of the following is
required to reach a goal for cleaning purpose?

A. current location and status of all rooms
B. Move Left, Right, Suck

C. Wait if the room is clean

D. Both Aand B



The search Process explores all State
Spaces in a given scenario

8-Puzzle State-Space Search Tree
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Find the total number of states the 8 square
puzzle grid can be in
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e States?? List of 9 locations-e.qg., [7,2,4,5,-,6,8,3,1]

e [Initial state?? [7,2,4,5,-,6,8,3,1]
e Actions?? {Left, Right, Up, Down}
e Goaltest?? Check if goal configuration is reached
e Path cost?? Number of actions to reach goal
Example: The 8-puzzle
“sliding tile puzzle™
7 2 4 1 2 Aside:
variations
5 6 3 4 5 on goal state.
eg empty square
8 3 1 6 7 8 bottom right or
in middle.
states? the boards, i.e., locations of tiles
actions? move blank left, right, up., down

goal test? goal state (given; tiles in order)
path cost? 1 per move

Note: finding optimal solution of n-puzzle family is NP-hard!
Also, from certain states vou can’t reach the goal.

Total number of states 9! = 362,880 (more interesting space;
not all connected... only half can reach goal state)



VWater Jugs Problem

Given 4-liter and 3-liter pitchers, how do you get exactly 2
liters into the 4-liter pitcher?

= o o

State: (x, y) for # liters in 4-liter and 3-liter pitchers, respectively

* Which of the following are the empty state
and goal state to reach the required goal?

* A. Initial state: (0, 0) Goal state: (2, *)
* B. Initial state: (2, *) Goal state: (2, *)
* C. Initial state: (2, 0) Goal state: (0, 0)
* D. Initial state: (4, 3) Goal state: (4, 2)




Slon to Water Jug problem



Useful Concepts

e State space: the set of all states reachable from
the initial state by any sequence of actions

« When several operators can apply to each state, this gets
large very quickly

« Might be a proper subset of the set of configurations

e Path: a sequence of actions leading from one
state s; to another state s,

o Frontier: those states that are available for
expanding (for applying legal actions to)

e Solution: a path from the initial state s; to a state
s¢ that satisfies the goal test



Some additional terms

* A solution to a problem is an action sequence
that leads from the initial state to a goal state.

e Solution quality is measured by the path cost
function,

* and an optimal solution has the lowest path
cost among all solutions.



Some more MCQS

. The essence of search strategy/algorithm is

* A. Explore all paths to reach a goal

B. Choose a path breadth wise first
C. Choose a path depth wise first

D. Determine which frontier node to expand at a given
state.

. All the nodes that are to be expanded are ......
A. Frontiers

B. Leaf nodes

C. both Aand B

D. none of above



Formalizing Search in a State Space

e A state space is a directed graph: (V, E)
— Vis a set of nodes (vertices)
— E is a set of arcs (edges)
each arc is directed from one node to another node

e Each node is a data structure that contains:
— a state description
— other information such as:
e link to parent node
e name of action that generated this node (from its
parent)
e other bookkeeping data
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Figure 3.10 MNodes are the data structures from which the search tree is constructed. Each
ha=s a parent, a state, and various bookkeeping fields. Arrows point from child to parent.



Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search tree that is being con-
structed. For each node n of the tree, we have a structure that contains four components:

o n.5TATE: the state in the state space to which the node corresponds:

¢ n.PARENT: the node in the search tree that generated this node;

¢ n.ACTION: the action that was applied to the parent to generate the node;

o n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the initial state
to the node, as indicated by the parent pointers.



Formalizing Search in a State Space

e« Each arc corresponds to one of the finite number of

actions:
— when the action is applied to the state associated

with the arc's source node
— then the resulting state is the state associated with

the arc's destinationmn mnods=

o Each arc has a fixed, positive cost:
— corresponds to the cost of the action

Formalizing Search iin a State Space

o Each node has a finite set of successor nodes:
— corresponding to aff the legal actions
that can be applied at the source nodeae's state

e Expanding a node means:
— generate aff successor nodes
— add them and their associated arcs to the state-

space search ftree



Formalizing Search in a State Space

One or more nodes are designated as start nodes
A goal test iIs applied to a node’'s state to determine

if it is a goal node
A solution is a seqguence of actions associated with
a path in the state space from a start to a goal node:

— just the goal state (e.g., cryptarithmetic)
— a path from start to goal state (e.g.. S8-pu=z=zle)

The cost of a solution is the sum of the arc costs
on the solution path

Search Summary

Solution is an ordered sequence of
primitive actions (steps)

fAx) = a,, as, ..., a, where x is the input
Model task as a graph of all possible states
and actions, and a solution as a path
A state captures all the relevant information
about the past



Formalizing Search in a State Space

State-space search is the process of searching through
a state space for a solution by making explicit a
sufficient portion of an implicit state-space graph, in

the form of a search tree, to include a goal node:

TREE SEARCH Algorithm:

Frontier = {S}, where S is the start node

Loop do
if Frontier is empty then return tailure

pick a node, n, trom Frontier
if n is a goal node then return solution
Generate all n”'s successor nodes and add
them all to Frontier
Remowve n trom Frontier A State Space Graph
NG

« Each node implicitly represents
— a partial solution path from the start node to the ' \ / \
given node Jat—" @
— cost of the partial solution path ,ff"’f R *’/;/
e From this node there may be i___/ /

— many possible paths that have this partial path
—9

as a prefix
— many possible solutions \y
¥

What is the corresponding search tree?



Key Issues of
State-Space Search Algorithm

e Search process constructs a "search tree"
— root is the start state

— leaf nodes are:

o unexpanded nodes (in the Frontier list)
e "dead ends"” (nodes that aren't goals and have no

successors because no operators were possible)
e goal node is last leaf node found
e Loops in graph may cause "search tree" to be infinite
even if state space is small

e Changing the Frontier ordering leads to different
search strategies



Basic search algorithms: Tree Search

Enumerate in some order all possible paths from the
initial state

Here: search through explicit tree generation
* —ROOT=initial state.

* —Nodes in search tree generated through
transition model

* n general search generates a graph(same state
through multiple paths),

* —Tree search treats different paths to the same
node as distinct



When does Repeated states occur

and How to Handle them??
If State Space is Nota Tree

e The problem: repeated states

G —E=5
©O— (DD
=

e Ignoring repeated states: wasteful (BFS) or
impossible (DFS). Why?

e How to prevent these problems?



If State Space is Not a Tree

¢ We have to remember already-expanded states
(called Explored (aka Closed) set) too

* When we pick a node from Frontier
- Remove it from Frontier

- Add it to Explored
- Expand node, generating all successors

- For each successor, child,
e |f child i1s in Explored or in Frontier, throw child

away Il for BFS and DFS
e Otherwise, add it to Frontier

e Called Graph-Search algorithm in Figure 3.7
and Uniform-Cost-Search in Figure 3.14



The reason for Explored set in Graph

Search

The need for Explored set

Algorithms that forget their history are doomed
to repeat it.

The way to avoid exploring redundant pathsis to
remember where one has been. To do this, we
use a data structure called the explored set
/closed list which remembers every expanded
node.

Newly generated nodes that match previously
generated nodes—onesin the explored setor
the frontier—can be discarded instead of being
added to the frontier.

This new algorithm is called GRAPH-SEARCH



Graph Search vs Tree Search

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH( problem ) returns a solution, or failure
initialize the frontier using the initial state of problem

initialize the explored set to be empty
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

—_—_ —

Figure 3.7  An informal description of the general tree-search and graph-search algo-
rithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to
handle repeated states.




The basic difference between graph search and
tree search algorithm is in:

A. Handling loopy path/repeated states using
explored set

B. Frontier expansion
C. Both AandB
D. none



Measuring problem-solving performance/How do we compare
which search strategy is better among given options > Based In
Following criteria

* Completeness: Is the algorithm guaranteed to
find a solution when there is one?

e OPTIMALITY : Does the strategy find the
optimal solution?

e TIME COMPLEXITY : How long does it take to
find a solution?

 SPACE COMPLEXITY : How much memory is
needed to perform the search?



Search strategies

A search strategy is defined by picking the order of node expansion.

Strategies are evaluated along the following dimensions:
— completeness: does it always find a solution if one exists?
— time complexity: number of nodes generated
— space complexity: maximum number of nodes in memory
— optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximuimn depth of the state space (may be x)



Search Strategies

o Review: Strategy = order of tree expansion
+ |Implemented by different queue structures (LIFO, FIFO, priority)

o Dimensions for evaluation
+ Completeness- always find the solution?
+ Optimality -finds a least cost solution (lowest path cost) first?
+ Time complexity - # of nodes generated (worst case)
+ Space complexity - # of nodes in memory (worst case)

o Time/space complexity variables
+ b, maximum branching factor of search tree
+ d, depth of the shallowest goal node
« m, maximum length of any path in the state space (potentially =)



Introduction to space complexity

e You know about:
- “Big O" notation
« Time complexity

e Space complexity is analogous to time complexity

¢ Units of space are arbitrary

- Doesn’'t matter because Big O notation ignores constant
multiplicative factors
« Space units:
—One Memory word

—Size of any fixed size data structure
— eg Size of fixed size node in search tree



Uninformed search strategies

Uninformed (blind) search strategies use only the
information available in the problem definition:

— Breadth-first search

— Uniform-cost search

— Depth-first search

— Depth-limited search

— Iterative deepening search

— Bidirectional search

Key issue: type of queue used for the iringe of the search tree
(collection of tree nodes that have been generated but not yet

expanded) o




Uninformed/Blind Search And Informed Search - The Difference

- Uninformed means we onfy Know:
— The goal test

— The srrccessors( ) funcitionm
- But mof which nmnon-goal states are better

Informally:

e Uninformed search: All non-goal nodes in
frontier look equally good

e Informed search: Some non-goal nodes can be
ranked above others.

For the given search tree which of the following

property represents the blind search strategy if J is a

goal node and A is initial state?

A. A search strategy that visits A, B, C,D, J

B. A search strategy that visits all nodes of the tree in a
particular order until J is found

C. Asearch strategy that visits A, D, J

D. None of above




The Height and Depth Of a Tree = The Difference

* The depth of a node is the number of edges from the node to the tree's
root node.
A root node will have a depth of 0.

* The height of a node is the number of edges on the longest path from
the node to a leaf.
A leaf node will have a height of O.

* The height of a tree would be the height of its root node,
or equivalently, the depth of its deepest node.

Depth = O
Height = 3

2




Review: Breadth-Tirst search

o ldea:
- Expand shallowesli unexpanded node

e Implementation:

« frontieris FIFO (First-In-First-Out) Queue:
—Put successors at the end of frontier successor list.

>® @




Properties of breadth-first search

Note: check for
goal only when
node is expanded.

Time? 1+b+b>+b3+... +b7+ b(b-1) = O(b

Complete? Yes (1f 4 1s finite)

Space? O(b7!) (keeps every node in memory:
needed also to reconstruct soln. path)
Optimal soln. found?
Yes (1f all step costs are 1dentical)

Space is the bigger problem (more than time)

b: maximum branching factor of the search tree
d.: depth of the least-cost solution



Breadth-first search (simplified)

function BREADTH-FIRST-SEARCH(problem) returns a solution. or failure
node <- a node with STATE = problem. INITIAL-STATE, PATH-COST=0
if problem. GOAL-TEST(node.STATE) then return SOLUTION(node)

frontier <- a FIFO queue with node as the only element Position within

queue of new items

determines search
strategy

loop do
if EMPTY?(frontier) then return fai
node <- POP(frontier) |
add nede.STATE to explored
for each action in problem. ACTIONS(node.STATE) do
child <- CHILD-NODE(problem, node, action)
if problem. GOAL-TEST(child STA then return SOLUTION(child)
frontier <- INSERT{child, frontier)

! chooses the shallowest node 1n frontier

Subtle: Node inserfed into
queue only after testing fo
see If it is a goal state




CW ->Now your turn, simulate your brain like a BFS
and step wise show how it works including the frontier
as well as the explored set for below problem

e Start from “S” and the goal is “G”

e Now find the soln

BEBreadth-First Search (BFS)




BEBreadth-First Search (EFS)

genaeral Searcah (prol1 em L g T2k 2 |

# of nodes tested: O, expandad: O
expnd. node Frontier list

1Sk

general Searoh (proldaem ., ouaetie )
7 of nodes tested: 1, expandad: 1

expnd. node Frontier list

1S}
S not goa fa B Y




Breadth-First Search (BFS)

generalSearch (prollem , e gb TR P ]
# of nodes tested: 2, expandeaed: 2

expnd. node| Frontier list
{Sh

S {A.B.C}

A onot goal {B.C. D, E}

generalSearch (proeblem, gueus)
# of nodes tested: 3. expanded: 3

expnd. node| Frontier list
1Sk

S {A.B,C}

A {B.C.D.E}

B not goal {C.D.E.=}




general Search (problem, gqueus)
# of nodes tested: 4, expandead: 4

generalSearch (problem, gueue)
# of nodes tested: 5, expanded: 5

expnd. node| Frontier list expnd. node| Frontier list
15} 5}
5 {A.B,C} s {A,B,C}
A {B.C,D E} A {6,C.D,E}
B {C,DE G} B {C.D.E,G}
C notl goa {OVE, G P C {D E.G,F}
D ot 0o {E.G.F.' ]-

general Search (problem, gueus)
# of nodes tested: 6. expanded: &

expnd. node| Frontier list generalSearch (problem, gueus)
{5} # of nodes lested: 7, expanded: &
8 {A.B.C} expnd. node| Frontier list
A {B.C,DE} {5}
B {C,DE G} 5 {A.BC)
C {DE.G.F} A {B.CDE]
D {E.GFH} B {CD.E,G}
E not goal {G,FH G} C D.EGF}
B] {E.G.FH}
E {G.FH.G}
G {F.H,G} ...... :kl [




Breadth-First Search (BFS)

generalSearch (problem, gueue)
# of nodes tested: 7., expanded: 6

expnd. node| Frontier list
{Sh

S {A.B.C}

. {B.C.D,E}

B {C.D.E,G}

C {D.E.G.F}

D {E.G.F.H}

E {G.F.H, G}

G {F.H,G&}

cost:

Review: Breadth-first search

e ldea:
- Expand shaffowestf unexpanded node

e Implementation:
- frontirer is FIFO (First-In-First-Out) Queue:

—Put successors at the endad of fronfier successor list.




Implement a BFS for below graph
traversal. Start with O










0 has no more unvisited neighbors
so explore 9 now in the queue




No more neighbors of 9 to visit so expand 7

Note 11 is not
again inserted to
queue since 11 is
already in the
queue / the
frontier set that’s
where the job of
seeing the
element in either
the explored set
or frotnier comes.
So just add 6 and
3 in the queue
[frontier




The final
states
once all
nodes are
visited




Optimality Of BFS

 When all step costs are equal, breadth-first
search is optimal because it always expands
the shallowest unexpanded node.



Properties of breadth-first search

Complete? Yes (if b is finite)
Time Complexity? 7T+b+b2+b3*+... +b9 = O(b9)
Space Complexity? O(b9) (keeps every node in memory)
Optimal? Yes, if cost = 1 per step

(not optimal in general)

b maximum branching factor of search tree
d: depth of the least cost solution
m:> maximum depth of the state space (=)

Exponential Space (and time) Not Good...

- Exponential complexity uninformed search problems cannot
be solved for any but the smallest instances.

- (NAermory reqgquireaments are a bigger problem than execwtion

time.)

DEPTEL NODES TIMNIE MNIEMNICOEBE Y
2 110 0.11 miillisecomnds 107 kKilobyxtes
4 111100 11 mmilliseconds 106 megabyxtes
o 10 1.1 seconds 1 gigabytes
8 105 2 minutes 103 gicabytes
10 1010 3 hours 10 rerabytes
1z 101z 13 daxs 1 petabiytes
14 1014 3.5 mears 09 petabyxtles

Fig 3.132 Assumes b=10, 1M nodes/sec. 1000 bytes/mods



Il note for BFS below

So far, the news about breadth-first search has been good. The news about time and
space is not so good. Imagine searching a uniform tree where every state has b successors.
The root of the search tree generates b nodes at the first level, each of which generates & more
nodes, for a total of 52 at the second level. Each of these generates b more nodes, yielding b3
nodes at the third level, and so on. Now suppose that the solution is at depth 4. In the worst
case, it is the last node generated at that level. Then the total number of nodes generated is

b+ b2+ 834+ 4+ bd = 0(p).
(If the algorithm were to apply the goal test to nodes when selected for expansion, rather than
when generated, the whole layer of nodes at depth d would be expanded before the goal was
detected and the time complexity would be Q(b3+1).)

As for space complexity: for any kind of graph search. which stores every expanded

node in the explored set, the space complexity is always within a factor of & of the time

complexity. For breadth-first graph search in particular. every node generated remains in
memory. There will be @(b%—1) nodes in the explored set and (b?) nodes in the frontier,

>@&
B © > {C)
o ©& o & & @

Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.




Depth First Search

« Always expands one of the nodes at the deepest level of
the tree
— Low memory requirements
— Problem: depth could be infinite

« Uses a stack (LIFO)



Ran En O
e e

Depth-first search on a binary tree. The unexplored region is shown in light
gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes
at depth 3 have no successors and A is the only goal node.




DFS Graph search example

Search tree

| 2, % Search tree

State space graph
Search tree /.\.

c&@’lI‘Ch tree
Search tree 5

(D) (B > @ (3
6
o @



How can we get the best of both?

Search Conundrum

e Breadth-first

1 Complete,
M Optimal
but uses O(b9) space
e Depth-first
Not complete unless m is bounded
Not optimal
Uses O(b™) time; terrible if m >> d
M but only uses O(b*m) space



Depth-limited search: A building block

e Depth-First search but with depth limit L
* |.e. nodes at depth [ have no successors.
* No infinite-path problem!

e If [=d (by luck!), then optimal
« But:
—If /< d then incomplete &

—If > d then not optimal &

e Time complexity: O(b)
e Space complexity: O(b/) ©



lterative deepening search

¢ A general strategy to find best depth limit £

+ Key idea: use Depth-limited search as subroutine,
with increasing .

For d = 0 to o do
depth-limited-search to level d

1f 1t succeeds

then return solution

« Complete & optimal: Goal is always found at
depth d, the depth of the shallowest goal-node.

Could this possibly be efficient?



IDS(lterative Deepening Search)

Nodes constructed at each deepening

e Depth 0: 0 (Given the node, doesn’t constructit.)

e Depth 1: b' nodes

e Depth 2: b nodes + b2 nodes ._.!i; ;_i'._.

e Depth 3: b nhodes + b2 nodes + b3 nodes



IDS(lterative Deepening Search)

Total nodes constructed:

¢ Depth 0: 0 (Given the node, doesn’t constructit.)
e Depth 1: b' =b nodes

e Depth 2: b nodes + b2 nodes

e Depth 3: b nodes + b? nodes + b® nodes

Suppose the first solution is the last node at depth 3:
Total nodes constructed:

3*b nodes + 2*b2 nodes + 1*b3® nodes



Iterative deepening search / =0

Limit=0 s [ ]

Iterative deepening search /=1

Limit=1 D-G} A ﬁ A
v@r’/ﬁ\@ o o o e




Iterative deepening search /=2

ey /'(@h K@ 2 K\A




Iterative deepening search /=3

Limit = 3 No) o @
| o
< < s P v I S _




ID search, Evaluation
Complete: YES (no infinite paths) ©
Time complexity: O(b"f)

Space complexity: O(bd) O

Optimal: YES if step cost is 1. O



Summary of algorithms

Criterion | Breadth- Depth-  Depth- [terative
First First limited  deepening

Complete? | YES NO NO YES
Time b7 pm b b
Space b bm bl bd

Optimal? | VES NO NO YES




Which search is implemented with an empty first-in-first-out queue?
a) Depth-first search

b) Breadth-first search

c) Bidirectional search

d) None of the mentioned

When is breadth-first search is optimal?
a) When there is less number of nodes
b) When all step costs are equal

c) When all step costs are unequal

d) None of the mentioned

Select the most appropriate situation from below options where a
blind search can be used.

e Real-life situation

e Complex game

* Small Search Space
* All of the above



 What is the space complexity of Depth-first search? Where m is the max
depth of search tree

a) O(b™)

b) O(bl)

c) O(m)

d) O(bm)

How many parts does a problem consists of?
a)l b)2 c)3 d)4

Which algorithm is used to solve any kind of problem?
a) Breadth-first algorithm

b) Tree algorithm

c) Bidirectional search algorithm

d) None of the mentioned

Which search implements stack operation for searching the states?
a) Depth-limited search

b) Depth-first search

c) Breadth-first search

d) None of the mentioned



The time and space complexity for IDS is
a) O(b9) and O(bd)
b) O(bd) and O(b)
c) O(bm) and O(b™)
d) none
Depth first search expands the ......... node in the current fringe of the search
a) Child
b) Shallowest
c) Lowest path cost
d) None
DFS iS cccceevvnerererennnes efficientand BFS is ............. Efficient
a) Space, Space
b) Time, Time
c) Time, Space
d) Space, Time



uniform-cost search
(UCS)

When all step costs are equal, breadth-first
search is optimal because it always expands the
shallowest unexpanded node.

By a simple extension, we can find an algorithm
that is optimal with any step-cost function.

Instead of expanding the shallowest hode, UCS
expands the node n with the lowest path cost

g(n).
This is done by storing the frontier as a
priority queue ordered by g.




Uniform-cost search (UCS)

o Extension of BF-search:
 Expand node with lowest path cost

e Implementation:
frontier = priority queue ordered by g(n)

o Subtle but significant difference from BFS:

« Tests if a node is a goal state when it is selected for
expansion, not when it is added to the frontier.

Updates a node on the frontier if a better path to the same
state is found. —

P

. S0 always enqueues a node before checking
whether it is a goal.



Uniform Cost Search(UCS) algorithm = below algorithm handles repeated
states using explored set and the figure represents Part of the Romania state
space, selected to illustrate uniform-cost search

function Uniform-Cost-Search (problem)
Iloop do
if Empty?(frontier) thhen return failure
node = Pop(frontier)
if Goal?(node) then returmn Solution{(node)
Insaert node Iin exploraed
foreach child of node do
if ochifld Nmnot in frontier or explfored then
Insert child in fronntier
else If child in frontier with higher cost thhen
Remowve that old node from Ffronticer

Insert child in frontier
This 1s the algorithin 1inn Faigure 3 14 1n the textboolk, note thhat af

child 1s mot 1n fFomnfier but is 1 expliored, this algorithn wwill
throw awaw cfild

Bucharest

Figure 3.15 FPart of the Romania state space, selected to illustrate uniform—cost search.




Uniform-Cost Search (UCS)

e Use a Priority Queue to order nodes in Frontier,
sorted by path cost

e et g(n) = cost of path from start node s to current
node i

e Sort nodes by increasing value of g

generalSearch (problem, priorityQueus)
# of nodes tested: 0, expanded: O

expnd. node| Frontier list

(S)




Uniform-Cost Search (UCS)

general Search (prolxlem, priori tyDiietie)

# of nodes tested: 1. expandad: 1
expnd. node Frontier list

150}

S not goal =

5

general Sesarch {(prollem, prioritylOmacsuas)
& of nodes tested: 2, expandad: 2

expnd. node Frontier list
{Sh

= {B8:2,C 4 4.5}

B not goa i AeS S 2+5]




Uniform-Cost Search (UCS)

general Search (prollem, pprriori tyrDnaaeties )
# of nodes tested: 3. expanded: 3

expnd. node| Frontier list
{S}

= {B:2,C:4..A:5)

(=3 A A5 GIE)

C not goa {85 F a+2 G28%

general Searah (pralxdem Errieerd tprDmasesiaes )
7 of nodes tested: 4, expandad: <4

expnd. node| Frontier list
(S}

= {B:2,C:4_A05%

= {4 A5 S8

= {805, F6,G8%

A not goal {F:6,G:8B.E:5+4,
D 5+ ',_,;}




Uniform-Cost Search (UCS)

general Searaoh (prolblem , ppriori tcyOnuaerie )
# of nodes tested: 5. expanded: S

expnd. node Frontier list
1S}

S {B:2,C: 4 A:-5)

B {4 A5 0GB

iz {405 Fe Gg)

ot {F:6.G8,E:9,D: 14}

F mot goal 5 44+24+1 GEG8 . ED,
Ch:14)

general Searrch (prolxldem ., pPprricori tymaaeinese)
# of nodes tested: &6, expandaed: S

expnd. node Frontier list

{Sh

{B:2,C:4 A5}

{4 A5 Go8)

{85, F6 8}
{F:6,G:8 E:9.D:14}
{G: 7. G:8.E9.D: 14}
goal G B E9. D14}

no eXxXppandad

0| B 0|m|o




Uniform-Cost Search (UCS)

generalScearaoh (proldem, priori tyrlDnaerie )
# of nodes tested: 6. expandad: S

expnd. node| Frontier list
1S}

= B2 Cod AcCS)
(=3 A ACS EIEY
= {405 F 6 GG:8)
o,

|_

LE

{F:68. G 8,E:9,D: 14}
{7, &8 E9 D14}
{8, E:9 D:14}

path: S, C.F,.G
cost: T

e Time and space complexity: O(D7) (i.e., exponential)
— d iIs the depth of the solution
— b is the branching factor at each non-leaf node

e More precisely, time and space complexity is
Ot ) where all edge costs are €, £ > 0, and C* is
the best goal path cost



Il note for UCS below

* uniform-cost search expands nodes in order of
their optimal path cost. Hence, the first goal
node selected for expansion must be the
optimal solution.

Uniform-cost search is guided by path costs rather than depths, so its complexity is not
easily characterized in terms of b and d. Instead, let C* be the cost of the optimal solution,’
and assume that every action costs at least e. Then the algornthms WOTSI=Case Time and space
complexity is O(b'+1C7 /el ). which can be much greater than 5°. This is because uniform-
cost search can explore large trees of small steps before exploring paths involving large and
perhaps useful steps. When all step costs are equal, pi+1C" /el i just b+ When all step
costs are the same, uniform-cost search is similar to breadth-first search. except that the latter

“SIOps as S00N as 1L generates a poal, Whereas URTOM-Cost Search examines all the nodes a
the goal’s depth to see if one has a lower cost; thus uniform-cost search does strictly more
“work by expanding nodes at depth d unnecessarily.




Complexity of UCS

o« Complete!
¢ Optimal!

+ [f the cost of each step exceeds some positive bound «.
o Time complexity: O(b?*C%)
o Space complexity: O(b?* %)

where C™ Is the cost of the optimal solution

(if all step costs are equal, this becomes O(b?*)

NOTE: Dijkstra’s algorithm just UCS without goal



Uniform-cost search

Expand least-cost (of path to) unexpanded node
(e.g. useful for finding shortest path on map)
Implementation:

— fringe = queue ordered by path cost
g — cost of reaching a node

Complete? Yes, 1f step cost > & (>0)

Time? # of nodes with g < cost of optimal solution (c*).
O(b(jﬂ'c */ Ej)

Space? # of nodes with g < cost of optimal solution,
O(b1+1Cc*¢))
Optimal? Yes — nodes expanded in increasing order of g(n)

Note: Some subtleties (e.g. checking for goal state).
See p 84 R&N. Also, next slide.




Uniform-cost search

T'wo subtleties: (bottom p. 83 Norvig)

1) Do goal state test, only when a node is selected for expansion.
(Reason: Bucharest may occur on frontier with a longer than
optimal path. It won’t be selected for expansion yet. Other nodes
will be expanded first, leading us to uncover a shorter path to
Bucharest. See also point 2).

2) Graph-search alg. says “don’t add child node to frontier if already on
explored list or already on frontier.” BUT, child may give a shorter path
to a state already on frontier. Then, we need to modify the existing
node on frontier with the shorter path. See fig. 3.14 (else-if part).



Summary of algorithms (for notes)

Criterion Breadth- Depth- Depth- Tterative
First First limuated deepening
Complete YES NO NO YES
-Ij
Time b7 F 7 b! b
Space b b bi bd
Optimal? YES NO NO YES

Assumes b is finite

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yes® Yes®:? No No Yes® Yes®:d
Time O(b%) O(p1+LE"/ely O(b™) O(b") O(b%) O(b4/2)
Space O(bd] D{b“‘w'ffjj O(bm) O(bf) O(bd) O(bdﬁ*z}
Optimal? Yes” Yes No No Yes” Yes:4

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; ( is the depth limit.
Superscript caveats are as follows: ® complete if b is finite; * complete if step costs > ¢ for
positive €; © optimal if step costs are all identical; ¢ if both directions use breadth-first search.




How many types are available in uninformed search method?
a)3

b) 4

c)5

d) 6

Which search strategy is also called as blind search?

a) Uninformed search

b) Informed search

c) Simple reflex search

d) All of the mentioned

Which search is implemented with an empty first-in-first-out queue?
a) Depth-first search

b) Breadth-first search

c) Bidirectional search

d) None of the mentioned

Which search is implemented with stack(Last In First Out)?
a) Depth-first search

b) Breadth-first search

c) Bidirectional search

d) None of the mentioned



Which search is implemented with priority queue?
a) Depth-first search

b) Breadth-first search

c) Bidirectional search

d) Uniform Cost Search

Uniform-cost search expands the node n with the

a) Lowest path cost

b) Heuristic cost

c) Highest path cost
d) Average path cost

Which of the following is false?

UCS is complete and optimal

UCS is complete but not optimal
IDS is complete and optimal

DFS is not compete and not optimal



q
- How are nodes expanded by

o-l‘*eme

1
3 i Cr
e e Depth First Search
Breadth First Search

TIniformm Cost Search
Iterative Deepening

Are the solutions the same?

The DFS traversal from Sto G is

a) SADEG b)SABCDEG c)SAG d)SBG

The BFS traversal from Sto G is

a) SADEG b)SABCDEG c)SADBCEGAd)SABCSADEG
The IDS traversal from Sto G is

a)SADBCEG b)SABCSADEG c¢)SABCDEG d)SADEG
The Uniform Cost Search traversal is

a)SADEG b)SABCDEG ¢c)SADBCEGd)SABCSADEG



Example

How are nodes expanded by

Depth First Search
Breadth First Search
Tniform Cost Search
/ Iterative Decpemnng

~ — Are the solutions the same?

Nodes Expanded by:

= Depth-First Search: S A D E G
Solution found: S A G

= Breadth-First Search: S A B C D E G
Solution found: S A G

= UUniform-Cost Search:
s tion found: S B &G
—_

= Iterative-Deepening Search: S A B CS ADEG
Solution found: S A G

S ADBCEG




Bidirectional Search

Simultaneously:

— Search forward from start VA

— Search backward from the goal LNV L4 J
Stop when the two searches meet. &; # _ : _’_’_,ﬁzi _

A o — = @% b

If branching factor = b in each direction, ﬁ ™ MNow
with solution at depth d " ) "
= only O(2 b¥?)=0(2 b¥?)

-

* Checking a node for membership in the other search tree can be done in constant
time (hash table)

*+ Key limitations:
Space O(b??)
Also, how to search backwards can be an issue (e.g., in Chess)? What’s tricky?
Problem: lots of states satisfy the goal: don’t know which one is relevant.

Aside: The predecessor of a node should be easily computable (i.e., actions
are easily reversible).



Failure to detect repeated states can turn

Repeated states

L. —— -
linear problem into an exponential one!

mm—

Don’t return to parent node

Don’t generate successor = node’s
parent

Don’t allow cvcles

Don’t revisit state

D ' Keep every visited state in memory!
O(b% (can be expensive)

Problems in which actions are reversible (e.g., routing problems or
sliding-blocks puzzle). Also, in eg Chess; uses hash tables to check
for repeated states. Huge tables 100M+ size but very useful.

See Tree-Search vs. Graph-Search in Fig. 3.7 R&N. But need to
be careful to maintain (path) optimality and completeness.



* In graph search algorithm to get rid of repeated states we
need to

a) create a frontier

b) create list of explored set where visited vertices are stored
c) Create a list of vertices yet to be travelled

d) Create a list of edges yet to be travelled



Summary: General, uninformed search

Original search ideas in AI where inspired by studies of human problem
solving in, eg, puzzles, math, and games, but a great many Al tasks now
require some form of search (e.g. find optimal agent strategy; active
learning; constraint reasoning; NP-complete problems require search).

Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored.

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more tiie
than other uninformed algorithms.

Avoid repeating states / cycles.



Search

Search strategies determined by choice of node (in queue) to
expand

Uninformed search:

— Distance to goal not taken into account

Informed search :

— Information about cost to goal taken into account

Aside: “Cleverness” about what option to explore next,

almost seems a hallmark of intelligence. E.g., a sense of

what might be a good move in chess or what step to try
next in a mathematical proof. We don’t do blind search...




INFORMED SEARCH

d = min dist. to goal

—

» Start state

-3y

.=
Sn o W

fo goal info.
Eliminates search.

—
=

)
wSo®w
ey |

] -2

M
- o
-] — ko

o
-

™ A breadth-first search tree.

Practice:
Mnly have estimate of distance to goal (“heuristic information™).




Informed Search Concepts

a

E]

14

i5d
15 14
I ZEm
1 B 163
R 754
RN E R L R
w1 afjtanlf1raa] {160
Tadf|T 5474 (754

%ﬂm(}jl’_

LJJ\!\-;\@ {ﬂ@dj\\a/ A breadth-first search tree, -~

13

. sistics,” eliminates search.
i 1 | Llf\c-fite \( Approximate heuristics, significantly reduces 59_-;_1_1'_{;_];,_

Best (provably) use of search heuristic info: Best-first / A= search.

r"\ m GJLN\'\E LC(*I*(\H\?




The evaluation function 2>f(n)
The heuristic function = h(n) = estimated cost of the cheapest path from the state at
node n to a goal state.
Depending on the algorithm f (n) = h(n) or f(n) = h(n) + g(n)

»  Best-first search = a general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is selected
for expansion based on an evaluation function, f(n).

e The evaluation function is construed as a cost estimate, so the node with the lowest evaluation is
expanded first.

*  The implementation of best-first graph search is identical to that for uniform-cost search (Figure

« 3.14), except for the use of f instead of g to order the priority queue.

* The choice of f determines the search strategy. (For example, as Exercise 3.21 shows,
*  best-first tree search includes depth-first search as a special case.)

*  Most best-first algorithms include as a component of f a heuristic function, h(n)
Where h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

*  (Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the state at that
* node.)

*  Forexample, in Romania, one might estimate the cost of the cheapest path from Arad to Bucharest via the
straight-line distance from Arad to Bucharest.

. Heuristic functions are the most common form in which additional knowledge of the problem is
imparted to the search algorithm.




INnNformed Search

Informed searches use domain knowledge

to guide selection of the best path to continue
searching

Heuristics are used, which are informed guesses

Heuristic means "'serving to aid discovery"'

Define a heuristic function, Ff(s)

— uses domain-specific information in some way

— is (easily) computable from the current state
description

— estimates
* the "goodness" of node n
* how close node 1 is to a goal

* the cost of minimum cost path from node n to a goal
state



Informed Search

fi(i1) = 0O for all nodes
Ji(11) close to O means we think n is close to a goal state

Ji(r) very big means we think n is far from a goal state

All domain knowledge used in the search is encoded in
the heuristic function, /i



Is Uniform Cost Search the best we can do?
Consider finding a route from Bucharest to Arad..

™] Oradea

] Vaslt

o0
(=)
po—arrr

I Craiova—___ /Eforle
e : e




Is Uniform Cost Search the best we can do?
Consider finding a route from Bucharest to Arad..




A Better Idea...

e Node expansion based on an estimate which
includes distance to the goal

e General approach of informed search:

« Best-first search: node selected for expansion based
on an evaluation function f(n)

—f{n) includes estimate of distance to goal (new
idea!)

e Implementation: Sort frontier queue by this new fin).
« Special cases: greedy search, .4~ search



Informed search =2 Applying heuristic in search

algorithm i.e. we encode additional knowledge about

the problem into account using F(n)

> hewichie Knowledge.

Idea :

Use

How to take information into account? Best-first search.

e ————

Y
: use an evaluation Tunction for each node
Estimate of “desirability” of node

Expand most desirable unexpanded node first (*‘best-first search™)
— Heuristic Functions :

= f. States = Numbers

=\ fin): expresses the quality of the state »
Allows us 1o express problem-specific knowledge.
Can be imported in a generic way in the algorithms.

— Use uniform-cost search. See Figure 3.14 but use f(n) instead of
path cost g(n).

— Queuing based on f(n): ﬁ/f\(ﬁ‘r\'{"\ oY

Order the nodes in fringe in decreasing order of desirability
\

Special cases: (
* greedy best-first search

" o 2 he v ast

CLQS.‘\IOJQ e, W\Ddc e



The Heuristics approach 2 To make search algorithms perform
better, make an estimate of goal
i.e. calculate the straight line distance from Bucharest to every
other city and encode this information in f(n)>

Simple, useful estimate heuristic:
straight-line distances

L ralowea

Arad 366 Mehadia 241
Bucharest 0 MNeamt 234
Craiova 160 ODradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgin 77 Timisoara 329
Hirsowva 151 Urziceni 20
Iasi 226 Vaslui 199
Lugoj 244 FZerind 374




Heuristic (estimate) functions

Heureka! ---Archimedes

[dictionargg“A rule of thumb, simplification, or

educated guess that reduces or limits the search
for solutions in domains that are difficult and
poorly understood.”

Heuristic knowledge is useful, but not necessarily
correct.

Heuristic algorithms use heuristic knowledge to solve
a problem.

A heuristic function h(n) takes a state » and returns
an estimate of the distance from n to the goal. '

(graphic: http://hyperbolegames.com/2014/10/20/eureka-moments/) J



Best-First Search

- Sort nodes in the Frontier list by increasing
values of an evaluation function, f(7z), that

incorporates domain-specific information

= This is a generic way of referring to the class
of informed search methods

Basic idea:

e select node for expansion with minimal
evaluation function f(n)

- where fin) is some function that includes estfirmate heuristic
fi(r1) of the remaining distance to goal

e Implement using priority queue
e Exactly UCS with f(n) replacing g(n)



Greedy best-first search

Evaluation function at node n, f{n) = li(n) (heuristic)

= estimate of cost from n to goal

e.g., g p(n) = straight-line distance from n to Bucharest

Expands the node that is estimated to be closest
to goal

Completely ignores g(n): the cost to get to n

Idea: those podes may lead to solution quickly.

\ / il -
“Similar to depth-first search: It prefers to follow a single
path to goal (guided by the heuristic), backing up when it
hits a dead-end.




Greedy best-first search example
Fonter )

queue:
ﬁ' ARd 36— |
- 366

Pr——

o [nitial State = Arad

¢ Goal State = Bucharest Arad 366 Mehadia 41
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu m Timisoara 329
Hirsova 151 Urziceni 80
Tasi 226 Vaslui 199
Lugoj 244 Zerind 374

SJ[‘\\'Y\E chg‘h\q& :'Hby/\
Mok () ‘%ﬁ ) 1\ 0 4 LBU@MLSH



Greedy Best First Search(BFS) not to be confused with
uninformed BFS(Breadth First Search)

.\ me 1+ "

Frontier queue:
~—>|Sibiu253
Timisoara 329
Zerind 374

CNBAe G bm - 253‘>S+ ||1\LcL§T OT‘EbIM %bufhs

i.e. choose Sibiu from queue using dequeue operation and after Dqueuing
operation on most prioritized element the queue’s state will be as below:

-_} Timisoara
(329)




—

Frontier queue:
“",'> Fagaras 176
S -
Rimnicu Vilcea 193 | T Amd
Timisoara 329 - N~ T
Arad 366 TEbu >
- f_, B «\H 329 ar4
Zerind 374 |' y
Oradease0 | x> -@ @
Frontier queue:
—:;. Bucharest 0
Rimnicu Vilcea 193 < Amd
— o R
Sibiu 253 — L
Timisoara 329 @_"1—:)
™~ ,«-’ B \:H-_ 3239 a4
Arad 366 J y
Zerind 374 | Ched S " ?

Oradea 380

-

Goal reached !!

[ \
253 a



Properties of greedy best-first search

e Optimal?
+ Nol
—Found: Arad 2 Sibiu 2 Fagaras - Bucharest (450km)
—Shorter: Arad = Sibiu = Rimnicu Vilcea = Pitesti 2 Bucharest (418km)

=] Oradea

5]
101 b —Urziceni

C P




Properties of greedy best-first search

e Complete?
* No - can get stuck in loops,
+ e.g., lasi > Neamt = lasi = Neamt =>...

] Orades

] Hirsova

Bucharest

L Cralova

M) Glurglu




Another Example—> Note the color change of each
node when taken for expansion

® Greedy Best-First Search

Jre)d = Falsz)

# of nodes tested: O, expanded: O

expnd. node Frontier
{S:81

ey = Felaz)
# of nodes tested: 1, expandaed: 1 e

expnd. node Frontier
{S:8}%
= 3. B4 . .48:8%
— I

~—




Greedy Best-First Search

) = hi(a)
# of nodes tested: 2, expanded: 2

expnd. node | Frontier
{S:8}

S {C:3.,B:4,A:8}

C not gos {=:0,6B:4 A8}

fln) = hi(n)
# of nodes tested: 3, expanded: 2

expnd. node Frontier
{S:8}
S {C:3,B:4 A:B}
C {G:0,B:4, A:B}
G goal {B:4, A:8} not expandec




Greedy Best-First Search

fln) = hin)
# of nodes tested: 3, expanded: 2

expnd. node | Frontier
{5:8}

5 {C:3,B:4 A8}

C {G:0,B:4, A8}

€] {B:4. Ac8)

* Fast but not optimal




Properties of greedy best-first search

o Complete? No - can get stuck in loops,

+ e.0., lasi 2> Neamt - lasi > Neamt > ...
But, complete in finite space with repeated state elimination.

o Time? O(b™) - worst case (like Depth First Search)

+ Buta good heuristic can give dramatic improvement of average
cost

o Space? O(b™) - priority queue, so worst case: keeps
all (unexpanded) nodes in memory

o Optimal? No M
How can we fix this?

—

b: maxumum branching factor
of the search tree

d. depth of the least-cost
solution

m: maxumum depth of the state
space (may be o)



A* Search

Note: Greedy best-first search expands the node that

appears to have shortest path to goal. But what about cost

of getting to that node? Take it info account!

Best-known form of best-first search.

Idea: avoid expanding paths that are already expensive
F 71

Evaluation function f{n) =.+ hin)
- g(n) 2 actual cost to get from start node to a node (n)
h(n) = estimated cost from a node (n) to goal =2 Straightline distance

from node n to goal

— f(n) = estimated total cost of path through » to goal
Implementation: Frontier gueue as priority

_queue by increasing fin) (as expecred...) -
Aside: do we still have “looping problem™? i .
e pImepP No! We’ll eventually

| = get out of it. g(n)

Iasi 2 Neamt = Iasi 2 Neamt... ,
keeps going up.



Admissible heuristics

e A heuristic /i(n) is admissible if it never

overestimates the cost to reach the goal;
l.e. it is optimistic

Formally: ¥, n a node:

1. h(n) <h*(n) where h*m) is the true cost from n

2. h(n) 20 so h(G)=0 for any goal G.

e Example: h; ,(n) never overestimates the actual
road distance

Theorem: If /i(n) is admissible, A" using Tree Search is
optimal



Since h(n) is st line distance, so h(n)<=h"(n)
Note—> h™(n) is the minimum cost path among many actual cost
paths from n to goal

« Use the same evaluation function used by Algorithm A,
except add the constraint that for a/f nodes 1 in the

search space, h(n) < ™ (s1), where i1*(11) is the actual
cost of the minimum-cost path from 1 to a goal
_-_‘-‘_-l_.-_‘——__

* The cost to the nearest goal is never over-estimated

« When /i(71) = Ii"(11) holds true for all n, h is called an
admissible heuristic function

*« An admissible heuristic guarantees that a node on the
optimal path cannot look so bad that it is never

considere
Eivw S200 Niw

"-g_\
b=
5
=

ol |s|w|s|w|e| =
o

@mooosw
o | foe|tn|= o

109413

Since lin) = ™ () for all #,
I is admissible



When should A* Stop?

A* should terminate only when a goal is
removed from the priority queue

h=2

h=2

Same rule as for Uniform-Cost Search (UCS)
A* with hA() = 0 is Uniform-Cost Search



A* Revisiting States

* One more complication: A* might revisit a

state (in Frontier or Explored), and discover

a better path

=900

« Solution: Put D back in the priority queue,
using the smaller g value (and path)




A and A* Algorithm for
General State-Space Graphs

Frontier = {S} where S is the start node
Explored ={}
Loop do
if Frontier is empty then return tailure
pick node, n, with min fvalue trom Frontier
if n is a goal node then return solution
foreach each child, »’, of n do
if n"is not in Explored or Frontier
then add »n’ to Frontier
else if g(n") = g(m) then throw n” away
else add »n’ to Frontier and remove m
Remove n from Frontier and add n to Explored

Note: m is the node in Frontier or

Variant of algorithm in Fig. 3.14 Explored that is the same state as n’



Consistency

A heuristic, A, is called consistent (aka monotonic) if,
for every node n and every successor n’ of n, the
estimated cost of reaching the goal from n is no
greater than the step cost of getting to n’ plus the
estimated cost of reaching the goal from n’:

c(n, n’) = h(n) — (")
or, equivalently: hA(n) = c(n, ') + h(n")
Triangle inequality for heuristics

Implies values of falong any path are nondecreasing

When a node is expanded by A*, the optimal path to
that node has been found

Consistency is a stronger condition than admissibility

———

Is this A consistennt?

/@f N =2

—

=t = =0
—

Fr=9 00
A(C)=900, A(D)=1, c(C, D) = 1
but A(C) == c(C,. D) +~ HA(D) since

00 == 1 + 1, so hH is WOT consistent
(but A is admissible)



(0

A" search example
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: _ @ A* Search
Frontier queue: -
Sibiu 393 =

Timisoara 447 @ S
Zerind 449 393=140+253 447=118+329 449754374

We add the three nodes we found to the Frontier queue.

We sort them according to the g()+h() calculation.

g10) o PYad % ¢,
hsL , o, 0
AR b g o) £ " BN z140 140

I\M = [ | 2140
J/ Ihe 5+ \ll L\ Y\)
Arad 36 Mehadia Ul

Bucharest 0 Neamt ha

Craiova 160 Oradea 30

Dobreta i Pitesti 100

Fforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu %53

Giurgin il Timisoara 329

Hirsova 151 Urziceni )

Jasi 06 Vaslui 199

Lugoj W Lerind it




Frontier queue:

Rimricu Vicea 413

Fagaras 415

Timisoara 447

Zerind 449

Arad 646 _

Oradea 671

When we expand Sibiu, we run into Arad again. Note that we've
already expanded this node once; but we still add it to the Frontier
(ueue again.

o)

v

3

A* Search
< Amd
447=118+329 449=754374

.‘IE. __-_.‘m 9 < ..C;l;daa }. _.-‘r;rim Vicea

415=239+176 671=291+380 413=220+193

646=280+366

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
asi
Lugoj

Mehadia
Neamt

Oradea

Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui

Zerind

Ul
Il
380
100
193
25
39
80
199
34

b WL

7o) or PYad Dl
b gla) g7 “ Jo Ned =140+

Neamt ) :1 %0




@ A* Search

@hm‘:v

-

imisoara

447=118+329

@

6456=280+366 415=239+176 67 1-23 1 +380

Frontier queue:
Fagaras 415
Pitesti 417
Timisoara 447
Zerind 449
Craiova 526
Sibiu 553

Arad 646
Oradea 671

526=366+160 417=317+100 553=300+253

We expand Rimricu Vicea.



A* Search

>
H47=118+329 449=75+374

546 =280+366

67 1-2‘91 +380

591 =338+253

Frontier queue:

Pitesti 417
Timisoara 447
Zerind 449
Bucharest 450
Craiova 526
Sibiu 553
Sibiu 591
Arad 646
Oradea 671

45.0-450+g 52&45&»150 41 ;.31 7+100 553=300+4253

"

When we expand Fagaras, we find Bucharest, but we're not

_done. The algorithm doesn't end until we “expand” the goal
_node - it has to be at the top of the Frontier queue.




@ A* Search

e
{: Sl:llu __} o .q-.i-rr-li-snala o ._.ﬂ_ E-
- —~ 447=118+329 449=754+374
@
646=280+366 P . B71= 2914350 o
-
591=338+253 450=450+0 525-3554-150 e 553—3CD+253
r,'b Eimnicw Vicsa
Timisoara 447
Zerind 449
Bucharest 450 Note that we just found a better value for Bucharest!
Craiova 526
Sibiu 553 Now we expand this better value for Bucharest since it's at
Sibiu 591 the top of the queue.
We're done and we know the value found is optimal!
Arad 646

Oradea 671



g(n),f(n), h(n) and h*(n) calculation in A*

Example Example

gl | hin}| fin)  |h*in) liln )| filan) fi*in)

ey

@m| oo | e =

Gy (M (OO | B |l

&li) = actual cost to get to node # (i) = actual cost to get to node 1
from start from start




g(n),f(n), h(n) and h*(n) calculation in A*

Example

gin) hin )| find T ")

& Mo ()= W) =

gln) = actual cost to get to node i
from start

Example

Example

gin) hin )| fin) h*(n)

a0 | L | ==

gm0 (m =W =

gln) = actual cost to get to node i
from start

n | gin) Rule )| fim ) he*m)
5 |0
A |1
B |5
c |8
D
E
G
glr) = actual cost to get to node i
from start
Example
n | gin) Rulr M fim ) f*in)
5|0
A |1
B |5
C|a
D |4
E |1+7 =8 7l @&
G
H®
glr) = actual cost to get to node i

from start




g(n),f(n), h(n) and h*(n) calculation in A*

n |gind  |hind| find | h*n) n |(gind | hin)| find | h"(n)
5 |0 5|0
A |1 A1
B |5 B |5
C |8 C (&
D |4 D |4
E |B E | &
G iaMa G [ 10013
i) = actual cost to get to node # frli) = estimated cost to get to a goal
from start from mode n
Example Example
n |gin)  |kin)| find | K*(n) n |gin) ki) fin) [R*(n)
5 |0 8 5|0 8 B
A1 8 A (1 8 g
B |5 4 B [5 4 ]
C |8 3 C (8 3 11
D |4 = D |4 = o=
E |8 = E |8 = o=
G |10aM3fo G [ 10813 (0 100813
I1(n) = estimated cost to got to a goal fln) = glnd + hin)
from node i actual cost to get from start to
plus estimated cost from # to goal




g(n),f(n), h(n) and h*(n) calculation in A*

n |gin)  [hin)] fin) W)
8 |0 8 8

A1 i 9

B |5 4 2

C |58 3 11

D |4 = |

E |5 - ]

G 108130 1008013

l1* (1) = true cost of minimum-cost path
from 1 to a goal

i |gink | hin)] fln) Bl
5 |0 8 8 8
A1 i 9

B |5 4 8

C (8 3 11

D |4 w =

E |& o -

G (108130 10/913

11" (1) =true cost of minimum-cost path
from i to a goal

E

xample

n | gl | hin)| fin) I*in)
5 |0 i 8 ]
A1 & 9 9

B |5 4 o

C |§ 3 11

D |4 L] L]

E |5 - @

G | 10/813 {0 1049013

I1* (1) = true cost of minimum-cost path
from 1 to a goal

Example

no | gk | hin)| fin) h*in)
5 |0 [i] i 8
A1 & 49 8

B |5 4 4 4

C |8 3 1

D |4 o -

E |& o0 =

G 108130 10/813

li*(1) = true cost of minimum-cost path
from i to a goal




g(n),f(n), h(n) and h*(n) calculation in A*

n | gin) hin)| fin) B in) | gln) hin )| fin) h*in)
S |0 8 8 ] S |0 <] 8 ]
A 1 8 9 9 A |1 B 9 9
B |5 4 9 - B |5 4 9 4
C |5 3 11 5 C |8 3 11 5
D |4 - w8 D |4 £ - ol
E | & - m| E |& o - o0
6 [10mi3]o [1omis 6 [10m13fo0  [1omnsfo

l1* (1) = true cost of minimum-cost path

11" (1) =true cost of minimum-cost path
from 1 to a goal

from i to a goal

Example Example

n | gl |[hin)| fin) = in) n |gnp | hin)| fin)

5 |0 & 8 8 5 |0 [i] &

A1 & ) 2 A1 B 9

B |5 4 9 B B |5 4 g

C |& 3 11 5 C |8 3 11

D |4 - @ o D |4 o0 =

E |8 © |= = E |8 w |

G | 10/8H3 [0 100813[ 0 G | 10130 10/813

Since li(#) < I*(n) for all 1,

optimal path = §,B,G It is admissible

cost=9




A* Search solution—> Another Example

A* Sea rc Is h admissible

and/or

consistent?

fr) = gl(nn) + h(n)

# of nodes tested: 0, expanded: 0

expnd. Frontier
node

{S:0+8}

h is consistent since h(S) — h(A)=8—-8 < 1, etc.
and therefore is also admissible



A* Search—> Note the change in color as the node is expanded

) = gin) + hin)
# of nodes tested: 1, expanded: 1

axpnd. Frontier
node
{5:8}
S {A:1+8,B:5+4,C:84 3}

fin) = gln) + hin)
# of nodes tested: 2, expanded: 2

axpnd. Frontier
node
{S:8}
s {A9,B:9,C:11)
A {B:9,G:1+9+0,C:11,

D:143+%9,E:1+T4+0} =3 E? ’

fin) = gln) + hin)
# of nodes tested: 3, expanded: 3

A* Search

axpnd. Frontier
node
{5:8}
5 [AD.B:9.C1)
A {B:9,G:10,C:11,D:%0 E-s0}
B | {5:5+4+0,5:48,C:11,

D:eoE:e0} raplace

fin) = g(n) + hin)
# of nodes tested: 4, expanded: 3

A* Search

expnd. Frontier
node

{58}
5 (A0 B9,C:11}
A [B:5,G:10,C:11,D:%0 E %0}
B [3:9,C:11,D:2 E: =0}
Gooal |11 Dioe Ere}

10t expanded




AF Search

Sy = g(rz) + Fi(az)
# of nodes tested: 4, expanded: 3

exprnd. Frontier
node
{S:8}
= {49 B:9,C:11}
A {B:9,G:10,C:11,D:° E:°2}
B {G:9,C:11,D: =0 E:=0}
G {C:11,D:°0 E:°°}
-  Pretty fast and optimal path: S5,B,.G
cost: 9

A™ search, evaluation

Completeness: YES
Time complexity: (exponential with path length)
Space complexity:(all nodes are stored)
Optimality: YES

= Cannot expand f.; until f; is finished.

- A expands all nodes with filn)< ffG)

- A expands one node with fin)=fG)

= A expands no nodes with filn)=fG)
Also optimally efficient (not including ties)



A* Search evaluation

Time complexity of A* depends on the quality of the
heuristic function.

In a worst-case, the algorithm time complexity can

be O(b”d), where b is the branching factor — the average
number of edges from each node, and d is the number of
nodes on the resulting path.

The better the heuristic function, the less of these nodes
need to be visited, and so the complexity drops.

If we assume heuristic function as the effective branching
factor — the average number of edges from each node that
we need to visit.

Similarly the space complexity of it is exponential O(b/d), ;
keeps all nodes in Memory in the worst case scenario.



Summary of informed search

« How to use a heuristic function to improve search

— Greedy Best-first search + Uniform-cost search = A* Search

* When 1s A* search optimal?
— h1s Admussible (optimistic) for Tree Search

— h1s Consistent for Graph Search

Amosing heuristic functions

— A good heuristic function can reduce time/space cost of search by

_orders of magnitude. I

— Good heurnstic function may take longer to evaluate.
- ULCHON L




Informed Search Il

1. When A* fails — Hill climbing, simulated annealing
2. Genetic algorithms

e Local Search: Hill Climbing
e Escaping Local Maxima: Simulated Annealing
e Genetic Algorithms



Local search and optimization

e Local search:
Use single current state and move to neighboring states.

o |dea: start with an initial guess at a solution and
incrementally improve it until it is one
o Advantages:

« Use very little memory

+ Find often reasonable solutions in large or infinite state
spaces.

o Useful for pure optimization problems.

+ Find or approximate best state according to some
objective function

« Optimal if the space to be searched is convex



Solving Optimization Problems
using Local Search MMethods

MNow a different setting:

— Each state s has a score or cost, f(s), that we can
compute

— The goal is to find the state with the highest (or
lowwest) score, or a reasonably high (low) score

\}Cf— We do nmot care about the path
— Use variable-based models
- Solution is Nnot a path but an assigNnMment of values

for a set of variables
— Enumerating all the states is intractable

— Previous search algorithims are too expensive

Example Problem: Chip Layout Example Problem: Scheduling

N — PR B
HUEAT || {fef t T L] Channel
sl r Tt L Routing

Least cost, constrained, schedule

i

me ———— ™

Machines

Lots of Chip Real Estate Same connectivity. Alsor:

much less space parking lot layout,
product design, aero-
dynamic design,
“Million Queens™
problem, radiotherapy
treatment planning, ...




Local Searching

* Hard problems can be solved in polynomial
time by using either an:
— approximate model: find an exact solution
to a simpler version of the problem

— approximate solution: find a non-optimal solution
to the original hard problem

* We'll explore ways to search through a
solution space by iteratively improving
solutions until one is found that is optimal or
near optimal

Local Searching

* Local searching: every node is a solution

— Operators/actions go from one solution to
another

— can stop at any time and have a valid solution
— goal of search is to find a better/best solution

* No longer searching a state space for a solution

path and then executing the steps of the solution
path

* A* isn't a local search since it considers different

partial solutions by looking at the estimated cost
of a solution path

Local Searching

* An eperator/action is needed to transform

one solution to another

Informal Characterization

These are problems in which

* There is some combinatorial structure being
optimized

* There is a cost function: Structure - Real

number, to be optimized, or at least a reasonahle
solution is to be found

+ Searching all possible structures is intractable

* There's no known algorithm for finding the
optimal solution efficiently

» “Similar” solutions have similar costs

Local Searching

* Those solutions that can be reached with one
application of an operator are in the current
solution's neighborhood (aka “move set”)

* Local search considers next only those
solutions in the neighborhood

* The neighborhood should be much smaller

than the size of the search space
(otherwise the search degenerates)



Local Searching

An evaluation function, f, is used to map each
solution/state to a number corresponding to the
quality/cost of that solution

TSP: Use the length of the tour;

A better solution has a shorter tour length

Maximize f:

called hill-climbing (gradient ascent if continuous)
Minimize f:

called or valley-finding (gradient descent if continuous)
Can be used to maximize/minimize some cost



Hill-Climbing (HC)

* Question: What's a neighbor?

* Problem spaces tend to have structure. A
small change produces a neighboring state

* The size of the neighborhood must be small
enough for efficiency

* Designing the neighborhood is critical; This is
the real ingenuity — not the decision to use

hill-climbing
* Question: Pick which neighbor?
®* The best one (greedy)

* Question: What if no neighbor is better than the
current state”? Stop



Hill-climbing search

|. While (3 uphill points):
Move in the direction of increasing evaluation function f

Il. Lets = argmax f(s) , s asuccessor state to the current state n

next
3

« If fin) <f(s) then move to s

+ QOtherwise halt at n

e Properties:
+ Terminates when a peak is reached.
Does not look ahead of the immediate neighbors of the current state.
+ Chooses randomly among the set of best successors, if there is more than one.
Doesn't backtrack, since it doesn’'t remember where it's been

* a.k.a. greedy local search

“Like climbing Everest in thick fog with amnesia”



Hill-Climbing Algorithm

Pick initial state s

Pick fin neighbors(s) with the largest f(t)
if A(f) = f(s) then stop and return s

s =1t Goto Step 2.

RWN=

“ Simple
“ Greedy
® Stops at a Jocal maximum

HC exploits the neighborhood

— like Greedy Best-First search, it chooses what
looks best locally

— but doesn't allow backtracking or jumping to an
alternative path since there is no Frontier list

HC is very space efficient
— Similar to Beam Search with a beam width of 1

HC is very fast and often effective in practice



Hill Climbing = Iteration may stop at
local optima which isn’t desired

Local Optima in Hill-Climbing

= Useful mental picture: fis a surface (“hills”) in
state space

_,—--:‘J Global optimum,

i

j, i ] where we want to be
L-' e,
| Current state | state

* But we can’t see the entire landscape all at once.
Can only see a neighborhood; like climbing in fog

I

fog
,’ﬁ/ state




Search Space features

objective function

I __— global maximum

shoulder

N

local maximum

“flat™ local maximum

= sialc space
current
state



Hill-Climbing

Visualized as a 2D surface
e Height is quality/cost of solution = flx, y)

Ax, y)
e Solution space is a 2D 1
surface

e Initial solution is a point

Goal is to find highest point on
the surface of solution space

e Hill-Climbing follows the _

direction of the steepest

ascent, 1.e., where Increases

the most




Hill-Climbing (HC)

Solution found by HC is totally determined by
the starting point; its fundamental weakness is
getting stuck:—~

Ay)
—> e Atalocal maximum !
— > e Atplateaus and ridges ¢

Global maximum may not be
found

Trade off:
greedily exploiting locality as in HC
vs. exploring state space as in BFS

-y




Drawbacks of hill climbing

e Local Maxima: peaks that aren’t the highest
point in the space

e Plateaus: the space has a broad flat region that
gives the search algorithm no direction
(random walk) gnal foothill plateau

e Ridges: dropoffs to the sides; steps to the
North, East, South and West may go down, but
a step to the NW may go up.




Hill-Climbing with Random Restarts

Very simple modification: |
1. When stuck, pick a random new starting state
and re-run hill-climbing from there
2. Repeat this k times

3. Return the best of the k local optima found

® Can be very effective

¢ Should be tried whenever hill-climbing is used

* Fast, easy to implement; works well for many
applications where the solution space surface is not
too “bumpy” (i.e., not too many local maxima)



One Remedy to Drawbacks of Hill
Climbing: Rﬁg:%m Restart

e In the end: Some p ble aces a%
great forh I@S are

sll
terrible.

ill cllmb‘




One solution for hill climbing being
trapped at local maxima

Simulated annealing (SA)

e Annealing: the process by which a metal cools and freezes into
a minimum-energy crystalline structure (the annealing process)

e Conceptually SA exploits an analogy between annealing and
the search for a minimum in a more general system.

- AIMA: Switch viewpoint from hill-climbing to gradient descent
« (But: AIMA algorithm hill-climbs & larger AE is good...)
e SA hill-climbing can avoid becoming trapped at local maxima.

e SA uses a random search that occasionally accepts changes
that decrease objective function f.

e SA uses a control parameter T, which by analogy with the
original application is known as the system "temperature.”

e T starts out high and gradually decreases toward 0.



How Simulated annealing strategy is used in hill climbing

Simulated annealing (cont.)

e A "bad" move from A to B (f(B)<f(A)) is accepted with
the probability

P(move,_g)=¢

f 7 . 2 I e ) B B <3 B 1 T f
up(-Lﬁ' e .mf_x SSsSssassasssiiss | ..-zx.:l-i]

(fB)-f(A) /T

i T+ I I S S Y ' 5 e e e e e e e s o
AEEEEEEaa TN EEEEEE "l" R R R R R R BB Ottt e e e
_‘_‘_—I T e . ]
| ———r s ] f e
== == == SSS. =t - - - -I = AOI—[— 00, || =00 1
' el = e e A & o o e o o o o

e The higher T, the more likely a bad move will be made.

e As T tends to zero, this probability tends to zero, and
SA becomes more like hill climbing

e IfTis lowered slowly enough, SA is complete
and admissible.



Simulated annealing

Comes from the physical [I::rncess of annealing in which substances
are raised to high energy levels (melted) and then cooled to solid

state.
heat @ cool

The probability of moving to a higher energy state, instead of lower is
p = eN(-AE/KT)

where AE is the positive change in energy level, T is the temperature,
and k is Bolzmann's constant.

At the beginning, the temperature is high.
As the temperature becomes lower
— KT becomes lower

— AE/KT gets bigger

— (-AE/KT) gets smaller

— e™-AE/KT) gets smaller

As the process continues, the probability

of a downhill move gets smaler-and

smaller.




For Simulated Annealing

 AE represents the change in the value of
the objective function.

« Since the physical relationships no longer
apply, drop k. So p = e*-AE/T)

« We need an annealing schedule, which is
a sequence of values of T: Ty, T4, T5, ...




SA algorithm

current < start node;

for each T on the schedule /™~ need a schedule */

— next < randomly selected successor of current
— evaluate next; itit's a goal, return it

— AE <« nextValue — currentValue /™ already negated */
— ifAE =0
= then cwrrent < next I better than current */

- else current < next with probability e (AE/T)

How would you do this probabilistic selection?

FProbabilistic Selection

Select rmex?t with probability p

o ramndorm = 1

nurmiboer

Generate a randorrm mumber
I it's == p, select mnext




Simulated Annealing
Applicability

e Discrete Problems where state changes are
transforms of local parts of the configuration

E.G. Travelling Salesman problem, where moves are swaps
of the order of two cities visited:

—Pick an initial tour randomly

—Successors are all neighboring tours, reached by swapping
adjacent cities in the original tour

—Search using simulated annealing..

Time and space complexity of Hill climbing = It is exactly the same as DFS — the
only difference is the order that nodes are expanded in. That doesn’t change the
time or space complexity in the worst case (though in the average case, the whole
idea of a heuristic is to ensure that we get to a Goal faster...so, if it’s a good
heuristic, the average time complexity ought to improve).

Just like DFS then, it will always find an answer, though not necessarily the one
earliest in the search tree.



Game Playing

The Minimax Rule: Don’t play hope chess’

Idea: Make the best move for MAX assuming that MIN
always replies with the best move for MIN

Easily computed by a recursive process
+ The backed-up value of each node in the tree is determined
by the values of its children:

+ Fora MAX node, the backed-up value is the maximum of
the values of its children (i.e. the best for MAX)

« For a MIN node, the backed-up value is the minimum of
the values of its children (i.e. the best for MIN)



Minimax search

« Assume that both players play perfectly

— do not assume player will miss good moves or make
mistakes

» Score(s): The score that MAX will get towards
the end if both player play perfectly from s
onwards.

» Consider MIN’s strategy
| — MIN’s best strategy:

» choose the move that minimizes the score that will
result when MAX chooses the maximizing move

— MAX does the opposite




Min maxing

@ * Your opponent will @
MAX choose smaller numbers MAX
« If you move left, your
Your move mm / \ opponent will choose 3 Your move M e

* If you move right, your

Opponents = opponent will choose -8
move / \ / \ Thus your choices are Oppor:ﬁg:[!z - / & / \
-8
-8

only 3 or -8

* You should move left

Opponents —
move /& /\ Oppm;ﬁglz -/\ /\
> -8

s —



The Minimax Procedure

Until game is over:

1.

2.

Start with the current position as a MAX node. <
Expand the game tree a fixed number of ply.
Apply the evaluation function to the leaf positions.
Calculate back-up values bottom-up.

Pick the move assigned to MAX at the root

Wait for MIN to respond



MAX
2-ply Example: Backing up values ® \nn

N IEVANEL I
2’(7 A 2)‘<7 1)\8 A

3

Evaluation function value

This is the move /
selected by minimax

'''''
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MiniMax Algorithm

e Restrictions

— 2 players: Max = Computer & Min = Opponent

— Deterministic, perfect information

* Depth-bound & Evaluation function

— Construct tree (depth-bound)
— Compute evaluation |leaves

— Propagate upwards (min/max)

Min Q
/1IN
\\\

s

i

Max
/R

/

3

4

3

5




What if MIN does not play optimally?

e Definition of optimal play for MAX assumes MIN
plays optimally:
« Maximizes worst-case outcome for MAX.
» (Classic game theoretic strategy)

e But if MIN does not play optimally, MAX will do
even better. [Theorem-not hard to prove]



Minimax properties

Yes, against an optimal opponent, if
the tree 1s finite

Optimal?

Complete? | |
Yes, if the tree 1s finite

« Time complexity?
Exponential: O( b™)

Space complexity?
Polynomial: O( bm)

The minimax algorithm performs a complete depth-first exploration of the game
tree.

Where the maximum depth of the tree is m and there are b legal moves at each
point.



Comments on Minimax Search

¢ Depth-first search with fixed number of ply m as the limit.
« O(b7) time complexity — As usual!
« O(bm) space complexity

¢ Performance will depend on
+ the quality of the static evaluation function (expert knowledge)
« depth of search (computing power and search algorithm)

o Differences from normal state space search

+ Looking to make one move only, despite deeper search
+ No cost on arcs — costs from backed-up static evaluation
+ MAX can't be sure how MIN will respond to his moves

¢ Minimax forms the basis for other game tree search algorithms.



Alpha-Beta Pruning

e A way to improve the performance of the Minimax
Procedure

e Basic idea: “If you have an idea which is surely

bad, don’t take the time to see how truly awful it W
is” ~ Pat Winston

* We don't need to compute
the value at this node.

« No matter what it is it can't

effect the value of the root
node.




Player

Opponent

Player

Opponent

Figure 5.6  The general case for alpha—beta pruning. If m is better than n for Player, we
will never get to n in play.

a = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.

# = the value of the best (1.e., lowest-value) choice we have found so far at any choice point
along the path for MIN.

At first max player will start first move generally where



Alpha-Beta Pruning Il

During Minimax, keep track of two additional values:
* o: MAX’s current lower bound on MAX’s outcome

* [B: MIN’s current upper bound on MIN’s outcome

MAX will never allow a move that could lead to a worse score
(for MAX) than a

MIN will never allow a move that could lead to a better score
(for MAX) than f§

Therefore, stop evaluating a branch whenever:
+ When evaluating a MAX node: a value v = [ is backed-up
—MIN will never select that MAX node

» When evaluating a MIN node: a value v < « is found
—MAX will never select that MIN node
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af3-Pruning Vi 3/\@ 1
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* Generally applied optimization
— Instead of generating, then propagating

— Interleave generation and propagation

* Obtain information on redundant parts

* Generate tree: depth-first & Left-to-right

Max

— Propagate values of nodes

— Estimates for parent nodes Min




Perform the minimax algorithm on the figure
below. First without, later with af3-pruning.

i
i
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MiniMax without af-pruning

Max

Min
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MiniMax without af-pruning




MiniMax without af-pruning




MiniMax with af-pruning

Max -

Max

Min

ninRBEISEE

* a-nodes: Temporary values at MIN-nodes

MNax -

A I.@DII@DI-ID@-I

MNax

Min

@ 31[5]2] 1141 2] 3] (5] 4] 73] (2] [1] 4] [0] (5] (3] [0] (2] (7] (4] (31 (6] (3] [3] [L]



MiniMax with af-pruning
Mﬂ/kamxah
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* [B-nodes: Temporary values at MAX-nodes
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* Prune: Parent S-node 2 Child a-node
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Min
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MNax
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Max
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Min 0
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Min [ <3 ]

Max ®
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Max

Min [ <3 ]
Max =3 ®
Min  or—=37]¢ (=218 <4 o
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Alpha-beta pruning

* Depending ordering of expansion = Time
complexity for perfect ordering O(b™?)-
O( b3m/4)

* Space complexity = O(bm)



Constraint Satisfaction Problems

A CSP consists of:
 Finite set of variables X,, X,, ..., X

I

« Nonempty domain of possible values for each variable
D, D, ...D, where D.={v, ..., v}

 Finite set of constraints C,, C,, ..., C

TH

—Each constraint C, limits the values that variables can take,
e.g., X;#X, A state is defined as an assignment of values to
some or all variables.

¢ A consistent assighnment does not violate the
constraints,

e Example: Sudoku



Example: Cryptarithmetic

X, X, X
T WO FY (T U
+ T WO
F O U R
x X

e Variables: FTUWRO, X, X, X,
e Domain: {0,1,2,3,4,5,6,7,8,9}
e Constraints:

« Alldiff (F,T.U,W,R,0)

- O+O0=R+10-X,

- X, +W+W=U+10"X,

- X,+T+T=0+10-X,

« X;,=F.T#0.F#0




Example

Value of M =1 [ S==g, Mc=g, Ci==1,50 S + M + C1 ==10 ]
Now, S = {g, 8}

when Ci = {o, 1}
Also, E + O + C2 =10+ N, if Ci1 =1
Else, E +0O 4+ C2 = I, if Ci1 = o

Similarly,
Else, ™M

_|_
Aand, ID o+
Else, ID +

Analysis cont....

Now, analyzing and deducing values from Right to Left left to right, we get
IfCi=1,S8S=9 Then Ci1+S + M =11, which makes O=1 [False].
ifCi1=1,5=8,ThenCi +S + M =10, which makes O = o.
ifCi=0,S=9g,then C1+5S + M =10, which makes O = o.

So, O = o is valid.

Now, Both the above given alternatives look equally probable at the moment.
Since O = o, E + O + C2will give carry only when Cz2 =1and E = g.

But, that will give E + O + C2 =10, and N=o. [False, O = o is already
established]

So, the second alternative must be correct, i.e. Ci=0, S=qg, O=0, M=1.



Analysis cont....

If Cz2 = o, thhem E
so, Uz = 1.armd IV
Also,

MM+ R + Cz3 =E 4+ 10
E+1+FR+C3z =—FE + 10
or, B + C3 = g

MNow if C3z = o,

R =g [Imnvalid, S = g]
So, C3 = 1 nd R —

8.

P owar,
Choices For E =1{=2,3, 4, 5.6, 7§ so N ={3, 4, 5.6, 7, 8 }
But 8 is alreadvy taken.

So, E={=,.3, 4. 5.6 and N ={3, 4, 5, &, 7§

Analysis cont....

N o,
D+ E=104+% ==1=2

s0. (DE) = { (5, 7). (5, 7). (7. 5). (7.6} which means N (6,7, 8}
But 8 is alreati rtaken so —{ . ¥

eSfre e o oy ieb

Mow, if E = 6, M= [invalid, 7 is already taken, D = 7]
so,E=5, IN=6and ¥ = 2.

=1i7iand E = {5, 6}

Hence the Solution becomes ,
5=g9,E=g, N=06.D= M=1,0=0, R=58,%Y ==

ie. o9 5 6 7

+1 o 8 5
10 56 5 =

That's about it.



Constraint satisfaction problems

¢ An assignment is complete when every
variable is assigned a value.

e A solution to a CSP is a complete
assignment that satisfies all constraints.

e Applications:
« Map coloring
« Line Drawing Interpretation

« Scheduling problems
—Job shop scheduling
—Scheduling the Hubble Space Telescope

« Floor planning for VLSI

o Beyond our scope: CSPs that require a solution
that maximizes an objective function.



The water jug problem answer

Action / Successor Functions

R R TR N -

o)

. (x,
. (x,
. (x,
. (x,
. (x,

. (x,

. (x,

R

-

"t

"t

4) - (4, v) “Fill 4"
3)—= (x, 3) “Fill 3"
0) = (0, v) “Emptv 47
0) = (x, O0) “Emptv 37

=4 andy = 0) ——s (4, v-(4-x))

“Pour from 3 to 4 until 4 1s full™

=3 andx>=0) — (x-(3-v) 3)

“Pour from 4 to 3 until 3 1s full™

=4 andy = 0) — (x+y, 0)

“Pour all water from 3 to 47"
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