
DBMS
PANA ACADEMY



DBMS and advantages
A DBMS is a software system designed to manage databases. It provides an interface between users and the 
database, allowing users to store, retrieve, and manipulate data efficiently.

Components of DBMS

Database: Collection of related data.

DBMS Engine: Core component managing data storage, retrieval, and updates.

Database Schema: Structure that defines database organization.

Query Processor: Translates queries into instructions for the DBMS engine.

Transaction Management: Ensures data integrity during transactional operations.

Security Management: Controls access to data.

Backup and Recovery: Facilitates data backup and restoration.



Advantages of DBMS compared to File Management

Data Storage: DBMS stores data in a centralized database, organized in tables (for relational DBMS) or other structures (for non-relational DBMS like NoSQL). This 
centralization reduces redundancy and improves data consistency.

Data Independence: DBMS provides both physical and logical data independence. Changes to the database schema (logical) can be managed independently from 
the application programs, reducing maintenance efforts and risks.

Data Integrity: DBMS enforces data integrity through constraints (e.g., uniqueness, referential integrity) and transactions. ACID properties (Atomicity, Consistency, 
Isolation, Durability) ensure reliable and secure transaction processing.

Security: DBMS offers robust security features, including access control mechanisms (roles and permissions), encryption, and auditing. Security policies can be 
centrally managed and enforced across the entire database.

Concurrency Control: DBMS manages concurrent access to data using sophisticated concurrency control mechanisms (e.g., locking, multiversion concurrency 
control). This ensures data consistency and prevents conflicts among concurrent transactions.

Scalability and Flexibility: DBMS systems are designed for scalability and flexibility. They can handle large volumes of data and support various data types and 
models (relational, document-oriented, key-value, etc.). Scaling can be achieved through replication, sharding, or clustering.

Performance: DBMS optimizes data access and retrieval through query optimization techniques, indexing, and caching mechanisms, resulting in improved 
performance compared to file-based systems.



Data Abstraction and Data Independence
Data abstraction is a fundamental concept in computer science that refers to the process of exposing only 
the essential features of a complex system while hiding its internal details.

Three Levels of Data Abstraction
There are three levels of data abstraction in a DBMS:

1. Physical Level: This is the lowest level of abstraction, where the physical storage and organization of 
data are defined. This level is concerned with how the data is stored on disk, how it is accessed, and 
how it is retrieved.

2. Logical Level: This level is concerned with the logical structure of the data, including the relationships 
between different data entities. This level is responsible for defining the schema of the database, 
including the tables, fields, and relationships between them.

3. View Level: This is the highest level of abstraction, where the data is presented to the user in a 
simplified and abstracted form. This level is concerned with how the data is presented to the user, 
including the format and structure of the data.



Data Independence

Data independence is the ability to modify the physical storage and organization of data without affecting 
the logical structure of the data. There are two types of data independence.

1. Physical Data Independence: This refers to the ability to modify the physical storage and organization 
of data without affecting the logical structure of the data. For example, changing the storage device or 
the file organization of the data does not affect the logical structure of the data.

1. Logical Data Independence: This refers to the ability to modify the logical structure of the data without 
affecting the physical storage and organization of the data. For example, adding a new field to a table 
or changing the relationships between tables does not affect the physical storage and organization of 
the data.



Schema vs Instance



ER model

The Entity Relational Model is a model for identifying entities to be represented in the database and 
representation of how those entities are related.

The ER data model specifies enterprise schema that represents the overall logical structure of a database 
graphically.



Strong and Weak entity sets

1. Strong Entity
A Strong Entity is a type of entity that has a key Attribute. Strong Entity does not depend on other Entity in
the Schema. It has a primary key, that helps in identifying it uniquely, and it is represented by a rectangle.
These are called Strong Entity Types.
2. Weak Entity
An Entity type has a key attribute that uniquely identifies each entity in the entity set. But some entity type 
exists for which key attributes can’t be defined. These are called Weak Entity types.

For Example, A company may store the information of dependents (Parents, Children, Spouse) of an 
Employee. But the dependents can’t exist without the employee. So Dependent will be a Weak Entity Type
and Employee will be Identifying Entity type for Dependent, which means it is Strong Entity Type.

A weak entity type is represented by a Double Rectangle. The participation of weak entity types is always 
total. The relationship between the weak entity type and its identifying strong entity type is called 
identifying relationship and it is represented by a double diamond.

https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/
https://www.geeksforgeeks.org/weak-entity-set-in-er-diagrams/


Attributes and Keys

A key refers to an attribute/a set of attributes that help us identify a row (or tuple) 
uniquely in a table (or relation). 

Keys are of seven broad types in DBMS:

1. Candidate Key
2. Primary Key
3. Foreign Key
4. Super Key
5. Alternate Key
6. Composite Key
7. Unique Key



Primary Key

The primary key refers to a column or a set of columns of a table that helps us 

identify all the records uniquely present in that table.

A table can consist of just one primary key.

The PK (PRIMARY KEY) constraint that we put on a column/set of columns won’t 

allow these to have a null value or a duplicate



Candidate Key

The candidate keys refer to those attributes that identify rows uniquely in a table. 

In a table, we select the primary key from a candidate key. Thus, a candidate key 

has similar properties as that of the primary keys that we have explained above. In 

a table, there can be multiple candidate keys.



Foreign Key

We use a foreign key to establish relationships between two available tables. The 

foreign key would require every value present in a column/set of columns to match 

the referential table’s primary key. A foreign key helps us to maintain data as well 

as referential integrity.



Composite Key

The composite key refers to a set of multiple attributes that help us uniquely 

identify every tuple present in a table. The attributes present in a set may not be 

unique whenever we consider them separately. Thus, when we take them all 

together, it will ensure total uniqueness.



Normalization

A large database defined as a single relation may result in data duplication. This repetition of data 
may result in:

● Making relations very large.
● It isn't easy to maintain and update data as it would involve searching many records in relation.

● Normalization is the process of organizing the data in the database.
● Normalization is used to minimize the redundancy from a relation or set of relations. It is also 

used to eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.
● Normalization divides the larger table into smaller and links them using relationships.
● The normal form is used to reduce redundancy from the database table.



MCQ Practice 

https://www.sanfoundry.com/database-mcqs-entity-relationship-model/

https://www.sanfoundry.com/database-mcqs-entiity-relationship-diagram/

https://www.sanfoundry.com/database-mcqs-entity-relationship-model/

	Slide 1: DBMS
	Slide 2: DBMS and advantages
	Slide 3: Advantages of DBMS compared to File Management
	Slide 4: Data Abstraction and Data Independence
	Slide 5: Data Independence
	Slide 6: Schema vs Instance
	Slide 7: ER model
	Slide 8: Strong and Weak entity sets
	Slide 9: Attributes and Keys
	Slide 10: Primary Key
	Slide 11: Candidate Key
	Slide 12: Foreign Key
	Slide 13: Composite Key
	Slide 14: Normalization
	Slide 15: MCQ Practice 

