
1

Theory of
Computation and

Computer Graphics

Krishna Gaire (Data Engineer @ CGT)

Chapter 6

6.1 Introduction to finite automata
6.2 Introduction to context free language
6.3 Turing machine

6.4 Introduction of computer graphics
6.5 Two-dimensional transformation
6.6 Three-dimensional transformation

Outlines

6.1 Introduction to finite automata

Introduction to Finite Automata and Finite
State Machine
Equivalence of DFA and NDFA
Regular Expressions
Minimization of Finite State Machines
Equivalence of Regular Expression and
Finite Automata
Pumping lemma for regular language.

4

Formal languages

An alphabet ∑ is a set of symbols:
e.g. ∑= {a, b, c}

A string ω is a sequence of symbols, e.g ω=abcb.
The empty string ε consists of zero symbols.

The Kleene closure ∑* (‘sigma star’) is the (infinite)
set of all strings that can be formed from ∑:

∑*= {ε, a, b, c, aa, ab, ba, aaa, ...}

A language L ⊆ ∑* over ∑ is also a set of strings.
Typically we only care about proper subsets of ∑* (L ⊂ Σ).

An automaton is an abstract model of a
computer. It reads an input string symbol by
symbol.
It changes its internal state depending on
the current input symbol and its current internal state.

Current input symbol

Automata and languages

a

Automaton

Input
string

q
Current

state

2. change
state Automaton

q’
New
state

a b a c d e

1. read input

5

Automata and languages
The automaton either accepts or rejects
the input string.
Every automaton defines a language

(the set of strings it accepts).

a b a c d e

Automaton

Input
string

read accept!

reject!

Input string is in
the language

6

Input string is NOT
in the language

7

Automata and languages

Different types of automata define
different language classes:

-Finite-state automata define regular languages

-Pushdown automata define context-free languages

-Turing machines define recursively enumerable

languages

Finite-state automata
A (deterministic) finite-state automaton (FSA)
consists of:

- a finite set of states Q = {q0….qN}, including a start state q0
and one (or more) final (=accepting) states (say, qN)

- a (deterministic) transition function

δ(q,w) = q’
final state

(note the
double line)

q0

q2

q q1 3
q4

a

for q, q’ ∈ Q, w ∈ Σ
b c

x y
move from state q2

to state q4

if you read ‘y’

start state

8

q0

a
q1

b

q0

a q
2

3

a

q1

b
b a a a

b a a a

b a a a

b a a a
b a

q
0

q1 q
23

a

q0

a q
2

3

a

q1

b

a

b a a a

q0

a
q

2
3

q1

b

q
2

3

a

9

Start in q0

Accept
!We’ve reached the end of the string,

and are in an accepting state.

q0
a

q2
3

q1
b

b

q0

a
qq1

b

a

32
Start in q

0a
Reject!

b

10

(q1 is not a
final state)

Rejection: Automaton does
not end up in accepting state

Reject!
(There is no

Rejection: Transition not defined

q0

a
q

2
3

q1

b

q0

a q
2

3

a

q1

b

a

b a c

b a c

b a c

q0 qq1

b a

a

b a c

q0

a
q32 transition

labeled
‘c’)

q1

b

a

11

32
Start in q

0

12

Finite State Automata (FSAs)

A finite-state automaton M =〈Q, Σ, q0, F, δ〉 consists of:
-A finite set of states Q = {q0, q1,.., qn}

-A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,...})

-A designated start state q0 ∈ Q

-A set of final states F ⊆Q

-A transition function δ:

- The transition function for a deterministic (D)FSA: Q × Σ → Q

δ(q,w) = q’ for q, q’ ∈ Q, w ∈ Σ
If the current state is q and the current input is w, go to q’

- The transition function for a nondeterministic (N)FSA: Q × Σ → 2Q

δ(q,w) = Q’ for q ∈ Q, Q’ ⊆ Q, w ∈ Σ
If the current state is q and the current input is w, go to any q’ ∈ Q’

Recognition of a string w with a DFA is linear in the length of w

Finite-state automata define the class of regular languages
L1 = { anbm } = {ab, aab, abb, aaab, abb,… } is a regular language,
L2 = { anbn } = {ab, aabb, aaabbb,…} is not (it’s context-free).
You cannot construct an FSA that accepts all the strings in L2 and nothing else.

Finite State Automata (FSAs)

b q
3

1

Every NFA can be transformed into an equivalent DFA:
a a

b a b
q

0
q2 q

3
q

0
q

3

13

14

Regular Expressions
Regular expressions can also be used to define a
regular language.
Simple patterns:

-
Standard characters match themselves: ‘a’, ‘1’

-
Character classes: ‘[abc]’, ‘[0-9]’, negation: ‘[^aeiou]’
(Predefined: \s (whitespace), \w (alphanumeric), etc.)

-
Any character (except newline) is matched by ‘.’

Complex patterns: (e.g. ^[A-Z]([a-z])+\s)
-

Group: ‘(…)’
-

Repetition: 0 or more times: ‘*’, 1 or more times: ‘+’
-

Disjunction: ‘...|…’
-

Beginning of line ‘^’ and end of line ‘$’

Useful website for regex

https://www.w3schools.com/

https://regexr.com/

https://www.w3schools.com/

16

MCQs
MCQs:

1.Which of the following is a component of a finite automaton?
 a. Alphabet b. Transition function c. States d. All of the above

2. In a DFA, for a given state and input, the transition to the next state is:
 a) Non-deterministic b) Unique c) Undefined d) Multiple

3. Which of the following automata can have epsilon (ε) transitions?
a) DFA b) NFA c) Both DFA and NFA d) Neither DFA nor NFA

Lecture 2

● DFA and NFA (Continue from lecture 1 ...)
● Grammar
● Context-Free Languages
● Chomsky Normal Form

● Greibach Normal Form (GNF)

● Backus-Naur Form (BNF)

● Pushdown Automata (PDA)
● Pumping lemma for context free language
● Properties of context free Language.

DFA and NFA

Deterministic Finite Automaton (DFA) and Non-Deterministic Finite
Automaton (NFA) are fundamental concepts in the theory of computation,
particularly in the study of formal languages and automata theory.

They are used to model computation and recognize patterns within input
strings. Here’s a detailed explanation of both:

A DFA is a finite state machine where for each state and input symbol, there
is exactly one transition to a next state. This makes the DFA's behavior
predictable and straightforward.

An NFA is similar to a DFA but with a key difference: for a given state and
input symbol, it can transition to any number of next states, including zero
states. This introduces the concept of non-determinism.

Grammar

2. Context Free Grammar : Context-free grammars are powerful enough to describe many syntactical

constructs in programming languages and natural languages.

3. Regular Grammar : These grammars have the most restricted form of production rules. They are either

of the form A→aBA \rightarrow aBA→aB or A→aA \rightarrow aA→a, where AAA and BBB are

non-terminals and aaa is a terminal. Regular grammars generate regular languages, which can be

represented by regular expressions and are recognized by finite automata.

Each level of the hierarchy is a superset of the one below it, meaning every regular grammar is also

context-free, every context-free grammar is context-sensitive, and every context-sensitive grammar is

unrestricted.

The list provided describes the four levels of the Chomsky hierarchy, a

classification of formal grammars in computational theory, based on their

generative power. Here's a brief explanation of each:

0. Unrestricted Grammar : These are the most general type of grammars

and have no restrictions on their production rules. They can generate any

language that can be recognized by a Turing machine, meaning they are

as powerful as any computational system.

1. Context Sensitive Grammar : These grammars have production rules of

the form 𝛼 𝐴 𝛽 → 𝛼 𝛾 𝛽 αAβ→αγβ, where 𝐴 A is a non-terminal, and 𝛼 α,

𝛽 β, and 𝛾 γ are strings of terminals and/or non-terminals, with 𝛾 γ being

non-empty.

Context-Free Languages

The class of context-free languages consists of languages that have
some sort of recursive structure.

We will see two equivalent methods to obtain this class.

1. We start with context-free grammars, which are used for defining
the syntax of programming languages and their compilation.

2. Then we introduce the notion of (nondeterministic) pushdown
automata, and show that these automata have the same power as
context-free grammars.

Context-Free Languages

The class of context-free languages consists of languages that have
some sort of recursive structure.

We will see two equivalent methods to obtain this class.

1. We start with context-free grammars, which are used for defining
the syntax of programming languages and their compilation.

2. Then we introduce the notion of (nondeterministic) pushdown
automata, and show that these automata have the same power as
context-free grammars.

We start with an example. Consider the following five (substitution) rules:

S → AB

A → a A → aA B → b B → bB

Here, S, A, and B are variables, S is the start variable, and a and b are terminals. We use these rules to

derive strings consisting of terminals (i.e., elements of {a, b}∗), in the following manner:

1. Initialize the current string to be the string consisting of the start variable S.

2. Take any variable in the current string and take any rule that has this variable on the left-hand

side. Then, in the current string, replace this variable by the right-hand side of the rule.

3. Repeat 2. until the current string only contains terminals.

For example, the string aaaabb can be derived in the following way:

S ⇒ AB

⇒ aAB

⇒ aAbB

⇒ aaAbB

⇒ aaaAbB

⇒ aaaabB

⇒ aaaabb

This derivation can also be represented using a parse tree, as in the figure

Definition

 A context-free grammar is a 4-tuple G = (V, Σ, R, S), where

1.V is a finite set, whose elements are called variables,

2.Σ is a finite set, whose elements are called terminals,

3. V ∩ Σ = ∅,

4.S is an element of V ; it is called the start variable,

5.R is a finite set, whose elements are called rules. Each rule has the form A → w,

where A ∈ V and w ∈ (V ∪ Σ)∗.

In our example, we have V = {S, A, B}, Σ = {a, b}, and

R = {S → AB, A → a, A → aA, B → b, B → bB}.

Chomsky Normal Form
A context-free grammar G = (V, Σ, R, S) is said to be in

Chomsky normal form, if every rule in R has one of the

following three forms:

1.A → BC, where A, B, and C are elements of V , B /= S, and C

/= S.

2.A → a, where A is an element of V and a is an element of

Σ.

3.S → ǫ, where S is the start variable.

You should convince yourself that, for such a grammar, R
contains the rule S → ǫ if and only if ǫ ∈ L(G).

Greibach Normal Form (GNF)

GNF stands for Greibach normal form. A CFG(context free grammar) is
in GNF(Greibach normal form) if all the production rules satisfy one of
the following conditions:

○ A start symbol generating ε. For example, S → ε.

○ A non-terminal generating a terminal. For example, A → a.

○ A non-terminal generating a terminal which is followed by any

number of non-terminals. For example, S → aASB.

For Example :

G1 = {S → aAB | aB, A → aA| a, B → bB | b}

G2 = {S → aAB | aB, A → aA | ε, B → bB | ε}

Backus-Naur Form (BNF)

BNF stands for Backus Naur Form notation. BNF may be a meta-language (a
language that cannot describe another language) for primary languages.

Left side → definition

S → aSa ,

 S → bSb

 S → c

BNF : S → aSa| bSb| c

Push Down Automata (PDA)

Pushdown automata is a way to implement a CFG in the same way we design DFA for a

regular grammar. A DFA can remember a finite amount of information, but a PDA can

remember an infinite amount of information with an "external stack memory"

The PDA can be defined as a collection of 7 components:

Q: the finite set of states

∑: the input set

Γ: a stack symbol which can be pushed and popped from the stack

q0: the initial state

Z: a start symbol which is in Γ.

F: a set of final states

δ: mapping function which is used for moving from current state to next state.

Pumping lemma for context free language

Pumping Length (for CFL) is used to prove that a language is not
context free

Let L be a context-free language. Then there exists an integer p ≥ 1,
called the pumping length, such that the following holds:

 Every string s in L, with |s| ≥ p, can be written as s = uvxyz, such that
1. |vy| ≥ 1 (i.e., v and y are not both empty),
2. |vxy| ≤ p, and
3. uvixyiz ∈ L, for all i ≥ 0.

Pumping lemma for CFL : 5 Pieces
Pumping lemma for Regular Langauge : 3 Pieces

Properties of context free Language.

1. Union
2. Concentration
3. Transpose
4. Kleenstar
5. Intersection
6. Complement.

Key Points
Finite Automata: Understand the concept of finite automata (FA) and finite state
machines. An FA is represented by a 5-tuple (Q, Σ, δ, q0, F).

DFA: Deterministic Finite Automata - has one unique transition for each symbol and
state. Represented by a 5-tuple (Q, Σ, δ, q0, F), where δ: Q × Σ → Q.

NDFA: Non-Deterministic Finite Automata - can have multiple transitions for the same
symbol and state. Represented by a 5-tuple (Q, Σ, δ, q0, F), where δ: Q × Σ → 2^Q.

Equivalence of DFA and NDFA: Both recognize the same class of languages (regular
languages). Any NDFA can be converted to an equivalent DFA.

Minimization of Finite State Machines: Techniques to reduce the number of states
in a DFA while preserving the language it recognizes.

Regular Expressions: Representations of regular languages using symbols and
operators. E.g., a(b|c)*.

Equivalence of Regular Expressions and Finite Automata: Both describe the same
set of languages. A regular expression can be converted to an FA and vice versa.

Pumping Lemma for Regular Languages: A property used to prove that certain
languages are not regular. It states that for any regular language, there exists a length
p such that any string longer than p can be split into three parts, and the middle
part can be pumped (repeated) to produce new strings in the language.

Context-Free Grammar (CFG): A type of grammar where each production rule has a
single non-terminal on the left-hand side. Represented by a 4-tuple (V, Σ, R, S).

Derivative Trees: Visual representations of the derivations of strings in a language,
showing how a string is generated by the grammar.

Bottom-Up Approach: Building the parse tree from the leaves to the root.

Top-Down Approach: Building the parse tree from the root to the leaves.

Leftmost Derivation: Replacing the leftmost non-terminal first during derivation.

Rightmost Derivation: Replacing the rightmost non-terminal first during derivation.

Language of a Grammar: The set of all strings that can be generated using the
grammar.

Parse Tree Construction: Creating a tree that represents the structure of a string
according to a grammar.

Ambiguous Grammar: A grammar that can generate the same string in multiple
ways, resulting in different parse trees.

Chomsky Normal Form (CNF): A form of CFG where each production rule is either A
→ BC or A → a, making the grammar simpler and easier to parse.

Greibach Normal Form (GNF): A form of CFG where each production rule is A → aα,
useful for certain parsing algorithms.

Backus-Naur Form (BNF): A notation used to express the grammar of a language in a
formal way, often used in programming language specifications.

Pushdown Automata (PDA): A type of automaton that uses a stack to handle
context-free languages. Represented by a 7-tuple (Q, Σ, Γ, δ, q0, Z0, F), where Γ is the
stack alphabet and Z0 is the initial stack symbol.

Pumping Lemma for Context-Free Languages: A property used to prove that certain
languages are not context-free. It states that for any context-free language, there exists
a length p such that any string longer than p can be split into five parts, and certain
parts can be pumped to produce new strings in the language.

Closure Properties of Regular Languages: Regular languages are closed under
operations like union, intersection, and complementation.

Closure Properties of Context-Free Languages: Context-free languages are closed under
operations like union and concatenation but not under intersection and complementation.

Applications: Real-world applications of finite automata and context-free languages in
areas like compiler design, formal verification, and natural language processing.

More Resources at:

Book :
https://cglab.ca/~michiel/TheoryOfComputation/Theory
OfComputation.pdf

https://www.geeksforgeeks.org/introduction-of-pushdo
wn-automata/

https://www.javatpoint.com/pushdown-automata

https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf
https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf
https://www.geeksforgeeks.org/introduction-of-pushdown-automata/
https://www.geeksforgeeks.org/introduction-of-pushdown-automata/

Next Lecture

Turing machine …

6.4 Introduction of computer graphics

- Overview of Computer Graphics

- Graphics Hardware (Display Technology, Architecture of
Raster-Scan Displays, Vector Displays, Display Processors, output
device and Input Devices)

- Graphics Software and Software standards.

Applications of Computer Graphics

There are many applications of computer graphics discussed below

Presentation Graphics – It is used to summarize financial statistical
scientific or economic data. For example- Bar charts systems and
line charts.

Entertainment- It is used in motion pictures, music videos, and
television gaming.

Education and training- It is used to understand the operations of
complex systems. It is also used for specialized systems such as
framing for captains, pilots, and so on.

Visualization- To study trends and patterns. For example- Analyzing
satellite photos of earth

6.4 Introduction of computer graphics

An electron gun emits a beam of electrons,
which passes through focusing and deflection
systems and hits on the phosphor-coated
screen. The number of points displayed on a
CRT is referred to as resolutions (eg.
1024x768).

Different phosphors emit small light spots of different colors, which
can combine to form a range of colors.

A common methodology for color CRT display is the Shadow-mask
meth
The light emitted by phosphor fades very rapidly, so it needs to
redraw the picture repeatedly.

Overview of Computer Graphics

There are 2 kinds of redrawing mechanisms:

1. Raster-Scan
2. Random-Scan (Vector Display)

Architecture of Raster-Scan Displays

The electron beam is swept across
the screen one row at a time from
top to bottom. As it moves across
each row, the beam intensity is
turned on and off to create a pattern
of illuminated spots.

This scanning process is called
refreshing.

Each complete scanning of a screen
is normally called a frame.

Architecture of Raster-Scan Displays

The refreshing rate, called the frame rate, is normally 60 to 80
frames per second, or described as 60 Hz to 80 Hz.

Picture definition is stored in a memory area called the frame
buffer.

This frame buffer stores the intensity values for all the screen
points. Each screen point is called a pixel (picture element).

On black and white systems, the frame buffer storing the values
of the pixels is called a bitmap.

Each entry in the bitmap is a 1-bit data which determine the on
(1) and off (0) of the intensity of the pixel.

Architecture of Raster-Scan Displays

On color systems, the frame buffer storing the values of the
pixels is called a pixmap (Though nowadays many graphics
libraries name it as bitmap too).

 Each entry in the pixmap 2 occupies a number of bits to
represent the color of the pixel.

For a true color display, the number of bits for each entry is 24 (8
bits per red/green/blue channel.

each channel 28=256 levels of intensity value, ie. 256 voltage
settings for each of the red/green/blue electron guns).

Raster-scan system uses shadow-mask method because they
produce wide range of colors.

Random-Scan (Vector Display)

The CRT's electron beam is directed only to the parts of the
screen where a picture is to be drawn. The picture definition is
stored as a set of line-drawing commands in a refresh display file
or a refresh buffer in memory.

Random-scan generally have
higher resolution than raster
systems and can produce
smooth line drawings, however
it cannot display realistic
shaded scenes.

Unlike raster displays, vector
displays do not require
refreshing.

Display Processors

Display Processor is the interpreter or a hardware that converts
display processor code into picture.

The Display Processor converts the digital information from CPU to
analog values.

The main purpose of the Digital Processor is to free the CPU from
most of the graphic chores.

The Display Processor digitize a picture definitions given in an
application program into a set of pixel intensity values for storage
in the frame buffer.

This digitization process is called Scan Conversion.

Display Technology

CRT (Cathode Ray Tube): Uses electron beams to light up
phosphors on the screen. Traditional and bulky.

LCD (Liquid Crystal Display): Uses liquid crystals and
backlighting. Slim and energy-efficient.

LED (Light Emitting Diode): Uses LEDs for backlighting in LCD
screens or directly as pixels in OLED displays.

OLED (Organic LED): Each pixel emits its own light, offering
better color and contrast.

Output Device & Input Devices

Input Devices
Keyboard and Mouse: Basic input devices for user interaction with graphics
software.

3D Mice: Allow for navigation and interaction within three-dimensional space.

Scanners: Devices for digitizing physical images or documents into digital formats.

Output Devices

Printers: Includes laser and inkjet printers for producing hard copies of graphics.

Plotters: Devices used for printing vector graphics, useful in engineering and
architectural drawings.

Graphics Software and Software Standards

Graphics Software Types: Includes graphics editors like Adobe
Photoshop, 3D modeling software like Blender, and CAD software
like AutoCAD.

Graphics Software Standards: Important standards include
OpenGL, Direct3D, Vulkan, and SVG.

OpenGL (Open Graphics Library): A cross-platform API for
rendering 2D and 3D graphics.

Pygame is library available in python.

Remaining topics on Computer
Graphics on different slides

Turing Machine …

Turing Machine …

Turing Machine was invented by Alan Turing in 1936 and it is used
to accept Recursive Enumerable Languages (generated by Type-0
Grammar).

In the context of automata theory and the theory of computation,
Turing machines are used to study the properties of algorithms
and to determine what problems can and cannot be solved by
computers.

They provide a way to model the behavior of algorithms and to
analyze their computational complexity, which is the amount of
time and memory they require to solve a problem.

Turing Machine …

Turing Machine …

Turing Machine

Introduction to Turing Machines: A theoretical model for
computation, with components like tape, head, state register, and
instruction table.

Notations of Turing Machine: Symbols and transition functions
define the machine's operations.

Acceptance of a String by a Turing Machine: A string is accepted
if the machine reaches a final state.

Turing Machine as a Language Recognizer: Recognizes languages
by accepting all strings in the language.

Turing Machine as a Computing Function: Computes functions
mapping input strings to output strings.

Turing Machine

Turing Machine with Multiple Tracks: Uses a single tape with
multiple tracks to simulate complex computations.

Turing Machine with Multiple Tapes: Uses multiple tapes and
heads to simplify complex computations.

Non-Deterministic Turing Machines: Can make multiple moves
from a state and symbol, accepting if any path leads to a final
state.

Church-Turing Thesis: Any function computable by an algorithm
can be computed by a Turing machine.

Universal Turing Machine: Can simulate any other Turing
machine, foundational for general-purpose computing.

Turing Machine

Computational Complexity: Studies resources (time and space)
needed for Turing Machines to solve problems.

Intractability: Problems that cannot be solved in polynomial time,
like NP-complete problems(nondeterministic polynomial time).i.e
Travelling Salesman Problem (TSP)

Reducibility: Solving one problem using the solution to another,
classifying problems by complexity.

Numerical

Numerical

Numerical

Best of Luck

UNIT-1 : 2D AND 3D TRANSFORMATION &
VIEWING

2D Transformation

Transformation means changing some graphics into something else by

applying rules. We can have various types of transformations such as

translation, scaling up or down, rotation, shearing, etc. When a

transformation takes place on a 2D plane, it is called 2D transformation.

Transformations play an important role in computer graphics to reposition

the graphics on the screen and change their size or orientation.

Homogenous Coordinates
To perform a sequence of transformation such as translation followed by

rotation and scaling, we need to follow a sequential process −

• Translate the coordinates,

• Rotate the translated coordinates, and then

• Scale the rotated coordinates to complete the composite

transformation.

•

To shorten this process, we have to use 3×3 transformation matrix instead

of 2×2 transformation matrix. To convert a 2×2 matrix to 3×3 matrix, we

have to add an extra dummy coordinate W.

In this way, we can represent the point by 3 numbers instead of 2

numbers, which is called Homogenous Coordinate system. In this

system, we can represent all the transformation equations in matrix

multiplication. Any Cartesian point P(X, Y) can be converted to

homogenous coordinates by P’ (Xh, Yh, h).

Translation
A translation moves an object to a different position on the screen. You

can translate a point in 2D by adding translation coordinate (tx, ty) to the

original coordinate (X, Y) to get the new coordinate (X’, Y’).

From the above figure, you can write that −

X’ = X + tx

Y’ = Y + ty

Rotation
In rotation, we rotate the object at particular angle θ (theta) from its

origin. From the following figure, we can see that the point P(X, Y) is

located at angle φ from the horizontal X coordinate with distance r from

the origin.

Let us suppose you want to rotate it at the angle θ. After rotating it to a

new location, you will get a new point P’ (X’, Y’).

Using standard trigonometric the original coordinate of point P(X, Y) can

be represented as −

Where R is the rotation matrix

Scaling
To change the size of an object, scaling transformation is used. In the

scaling process, you either expand or compress the dimensions of the

object. Scaling can be achieved by multiplying the original coordinates of

the object with the scaling factor to get the desired result.

Let us assume that the original coordinates are (X, Y), the scaling factors

are (SX, SY), and the produced coordinates are (X’, Y’). This can be

mathematically represented as shown below −

X' = X . SX and Y' = Y . SY

The scaling factor SX, SY scales the object in X and Y direction respectively.

The above equations can also be represented in matrix form as below −

(X′Y′)=(XY)[Sx00Sy](X′Y′)=(XY)[Sx00Sy]

OR

P’ = P . S

Where S is the scaling matrix. The scaling process is shown in the following

figure.

If we provide values less than 1 to the scaling factor S, then we can reduce

the size of the object. If we provide values greater than 1, then we can

increase the size of the object.

Reflection
Reflection is the mirror image of original object. In other words, we can

say that it is a rotation operation with 180°. In reflection transformation,

the size of the object does not change.

The following figures show reflections with respect to X and Y axes, and

about the origin respectively.

Shear
A transformation that slants the shape of an object is called the shear

transformation. There are two shear transformations X-Shear and Y-

Shear. One shifts X coordinates values and other shifts Y coordinate

values. However; in both the cases only one coordinate changes its

coordinates and other preserves its values. Shearing is also termed

as Skewing.

X-Shear

The X-Shear preserves the Y coordinate and changes are made to X

coordinates, which causes the vertical lines to tilt right or left as shown in

below figure.

Y-Shear

The Y-Shear preserves the X coordinates and changes the Y coordinates

which causes the horizontal lines to transform into lines which slopes up

or down as shown in the following figure.

Composite Transformation

If a transformation of the plane T1 is followed by a second plane

transformation T2, then the result itself may be represented by a single

transformation T which is the composition of T1 and T2 taken in that order.

This is written as T = T1∙T2.

Composite transformation can be achieved by concatenation of

transformation matrices to obtain a combined transformation matrix.

A combined matrix −

[T][X] = [X] [T1] [T2] [T3] [T4] …. [Tn]

Where [Ti] is any combination of

• Translation

• Scaling

• Shearing

• Rotation

• Reflection

The change in the order of transformation would lead to different results,

as in general matrix multiplication is not cumulative, that is [A] . [B] ≠ [B]

. [A] and the order of multiplication. The basic purpose of composing

transformations is to gain efficiency by applying a single composed

transformation to a point, rather than applying a series of transformation,

one after another.

For example, to rotate an object about an arbitrary point (Xp, Yp), we have

to carry out three steps −

• Translate point (Xp, Yp) to the origin.

• Rotate it about the origin.

• Finally, translate the center of rotation back where it belonged.

Explain Viewing transformation pipeline

The Viewing Transformation Pipeline:-

We know that the picture is stored in the computer memory using any
convenient Cartesian co-ordinate system, referred to as World Co-Ordinate

System (WCS). However, when picture is displayed on the display device it
is measured in Physical Device Co-Ordinate System (PDCS) corresponding
to the display device. Therefore, displaying an image of a picture involves

mapping the co-ordinates of the Points and lines that form the picture into
the appropriate physical device co-ordinate where the image is to be
displayed. This mapping of co-ordinates is achieved with the use of co-

ordinate transformation known as viewing transformation.

The viewing transformation which maps picture co-ordinates in the WCS to
display co-ordinates in PDCS is performed by the following transformations.

• Converting world co-ordinates to viewing co-ordinates.

• Normalizing viewing co-ordinates.

• Converting normalized viewing co-ordinates to device co-ordinates.

1. This transformation involves developing formulas that start with a point in the
world window, say (xw, yw).

2. The formula is used to produce a corresponding point in viewport coordinates,
say (xv, yv). We would like for this mapping to be "proportional" in the sense
that if xw is 30% of the way from the left edge of the world window, then xv is
30% of the way from the left edge of the viewport.

3. Similarly, if yw is 30% of the way from the bottom edge of the world window,
then yv is 30% of the way from the bottom edge of the viewport. The picture
below shows this proportionality.

Viewing & Clipping
The primary use of clipping in computer graphics is to remove objects,

lines, or line segments that are outside the viewing pane. The viewing

transformation is insensitive to the position of points relative to the viewing

volume − especially those points behind the viewer − and it is necessary

to remove these points before generating the view.

Point Clipping
Clipping a point from a given window is very easy. Consider the following

figure, where the rectangle indicates the window. Point clipping tells us

whether the given point (X, Y) is within the given window or not; and

decides whether we will use the minimum and maximum coordinates of

the window.

The X-coordinate of the given point is inside the window, if X lies in

between Wx1 ≤ X ≤ Wx2. Same way, Y coordinate of the given point is

inside the window, if Y lies in between Wy1 ≤ Y ≤ Wy2.

Line Clipping
The concept of line clipping is same as point clipping. In line clipping, we

will cut the portion of line which is outside of window and keep only the

portion that is inside the window.

Cohen-Sutherland Line Clippings
This algorithm uses the clipping window as shown in the following figure.

The minimum coordinate for the clipping region

is (XWmin,YWmin)(XWmin,YWmin) and the maximum coordinate for the

clipping region is (XWmax,YWmax)(XWmax,YWmax).

We will use 4-bits to divide the entire region. These 4 bits represent the Top,

Bottom, Right, and Left of the region as shown in the following figure. Here,

the TOP and LEFT bit is set to 1 because it is the TOP-LEFT corner.

Krishna Gaire

There are 3 possibilities for the line −

• Line can be completely inside the window (This line should be accepted).

• Line can be completely outside of the window (This line will be completely

removed from the region).

• Line can be partially inside the window (We will find intersection point and draw

only that portion of line that is inside region).

Algorithm

Step 1 − Assign a region code for each endpoints.

Step 2 − If both endpoints have a region code 0000 then accept this line.

Step 3 − Else, perform the logical ANDoperation for both region codes.

Step 3.1 − If the result is not 0000, then reject the line.

Step 3.2 − Else you need clipping.

Step 3.2.1 − Choose an endpoint of the line that is outside the window.

Step 3.2.2 − Find the intersection point at the window boundary (base on

region code).

Step 3.2.3 − Replace endpoint with the intersection point and update the

region code.

3D Computer Graphics
In the 2D system, we use only two coordinates X and Y but in 3D, an extra

coordinate Z is added. 3D graphics techniques and their application are

fundamental to the entertainment, games, and computer-aided design

industries. It is a continuing area of research in scientific visualization.

Furthermore, 3D graphics components are now a part of almost every

personal computer and, although traditionally intended for graphics-

intensive software such as games, they are increasingly being used by

other applications.

Parallel Projection
Parallel projection discards z-coordinate and parallel lines from each vertex

on the object are extended until they intersect the view plane. In parallel

projection, we specify a direction of projection instead of center of

projection.

In parallel projection, the distance from the center of projection to project

plane is infinite. In this type of projection, we connect the projected

vertices by line segments which correspond to connections on the original

object.

Parallel projections are less realistic, but they are good for exact

measurements. In this type of projections, parallel lines remain parallel

and angles are not preserved. Various types of parallel projections are

shown in the following hierarchy.

Orthographic Projection
In orthographic projection the direction of projection is normal to the

projection of the plane. There are three types of orthographic projections

−

• Front Projection

• Top Projection

• Side Projection

In perspective projection, the distance from the center of projection to

project plane is finite and the size of the object varies inversely with

distance which looks more realistic.

The distance and angles are not preserved and parallel lines do not remain

parallel. Instead, they all converge at a single point called center of

projection or projection reference point. There are 3 types of

perspective projections which are shown in the following chart.

• One point perspective projection is simple to draw.

• Two point perspective projection gives better impression of depth.

• Three point perspective projection is most difficult to draw.

The following figure shows all the three types of perspective projection –

Translation
In 3D translation, we transfer the Z coordinate along with the X and Y

coordinates. The process for translation in 3D is similar to 2D translation.

A translation moves an object into a different position on the screen.

The following figure shows the effect of translation –

3D Transformation

Rotation
3D rotation is not same as 2D rotation. In 3D rotation, we have to specify

the angle of rotation along with the axis of rotation. We can perform 3D

rotation about X, Y, and Z axes. They are represented in the matrix form

as below −

The following figure explains the rotation about various axes –

Scaling
You can change the size of an object using scaling transformation. In the

scaling process, you either expand or compress the dimensions of the

object. Scaling can be achieved by multiplying the original coordinates of

the object with the scaling factor to get the desired result. The following

figure shows the effect of 3D scaling −

In 3D scaling operation, three coordinates are used. Let us assume that the

original coordinates are (X, Y, Z), scaling factors

are (SX,SY,Sz)(SX,SY,Sz) respectively, and the produced coordinates are (X’,

Y’, Z’). This can be mathematically represented as shown below –

Shear
A transformation that slants the shape of an object is called the shear

transformation. Like in 2D shear, we can shear an object along the X-

axis, Y-axis, or Z-axis in 3D.

As shown in the above figure, there is a coordinate P. You can shear it to get

a new coordinate P', which can be represented in 3D matrix form as below –

Transformation Matrices
Transformation matrix is a basic tool for transformation. A matrix with n x

m dimensions is multiplied with the coordinate of objects. Usually 3 x 3 or

4 x 4 matrices are used for transformation. For example, consider the

following matrix for various operation.

1. Which of the following statements define Computer Graphics?
a) It refers to designing plans
b) It means designing computers
c) It refers to designing images
d) None of the mentioned

2. Among the given scientists/inventor who is known as the father of Computer
Graphics?
a) Nikola Tesla
b) Ivan Sutherland
c) Ada Lovelace
d) Marie Curie

3. Which of the following are the features of Computer Graphics?
a) Creation and deletion of images by computer only
b) Deletion and manipulation of graphical images by computer
c) Creation and manipulation of graphics by computer
d) Creation of artificial images by computer only

4. Which of the following is a Computer Graphics type?
a) Raster and Vector
b) Raster and Scalar
c) Scalar only
d) All of the above

5. Who is the first user of computer graphics?
a) William Fetter
b) Ivan Edward Sutherland
c) Ada Lovelace
d) Nicholas Williams

6. Which of the following is the purpose for using clipping in computer graphics?
a) copying
b) zooming
c) adding graphics
d) removing objects and lines

7. In a graphical system, an array of pixels in the picture are stored in which of the
following locations?
a) Frame buffer
b) Processor
c) Memory
d) All of the mentioned

8. Bitmap is a collection of ____________ that describes an image.
a) pixels
b) algorithms
c) bits
d) colors

9. Which of the following devices provides positional information to the graphics
system?
a) Pointing devices
b) Both Input devices and Pointing devices
c) Output devices
d) Input devices

10. Which of the following is defined as the number of pixels stored in the frame buffer
of a graphics system?
a) Resalution
b) Resolution
c) Depth
d) None of the mentioned

11. Which of the following is a primary output device of a graphics system?
a) Printer
b) Scanner
c) Video monitor
d) Neither Scanner nor Video monitor

12. Which of the following is used in graphics workstations as input devices to accept
voice commands?

a) Speech recognizers
b) Touch panels
c) None of the mentioned
d) All of the mentioned

13. Which of the following is defined as the process of elimination of parts of a scene
outside a window or a viewport?
a) editing
b) cutting
c) plucking
d) clipping

14. Which of the following is commonly known as frame buffer on a black and white
system with one bit per pixel?
a) Bitmap
b) Pix map
c) Multi map
d) All of the mentioned

15. What does an aspect ratio mean?
a) Ratio of vertical points to horizontal points
b) Ratio of vertical points to horizontal points and horizontal points to vertical points
c) Number of pixels
d) Ratio of horizontal points to vertical points

16. Each screen point is referred to as ?
a) Resolution
b) Pixel
c) Persistence
d) Dot Pitch

17. On a monochromatic monitor, the frame buffer is known as ?
a) Display file
b) Pixmap
c) Bitmap
d) Refresh buffer

18. Color information can be stored in
a) Main memory
b) Secondary memory
c) Graphics card
d) Frame buffer

19. The range that specifies the gray or grayscale levels is
a) The value range from -1 to 1
b) The value range from 0 to -1
c) The value range from 0 to 1
d) Any one of the above

20. In which system, the Shadow mask methods are commonly used
a) Raster-scan system
b) Random-scan system
c) Only b
d) Both a and b

21. he process of digitizing a given picture definition into a set of pixel-intensity for
storage in the frame buffer is called
a) Rasterization
b) Encoding
c) Scan conversion
d) True color system

22. Random-scan system mainly designed for
a) Realistic shaded screen
b) Fog effect
c) Line-drawing applications
d) Only b

23. The primary output device in a graphics system is_________
a) Scanner
b) Video monitor
c) Neither a nor b

d) Printer

24. On a black and white system with one bit per pixel, the frame buffer is commonly
called as
a) Pix map
b) Multi map
c) Bitmap
d) All of the mentioned

25. What technology does a CRT (Cathode Ray Tube) use to create images on the
screen?

a. Liquid crystals

b. Electron beams

c. LEDs

d. Organic LEDs

26. Which of the following is NOT a characteristic of CRT displays?

a. Uses electron beams

b. Slim design

c. Traditional and bulky

d. Lights up phosphors on the screen

27. What does an electron gun emit in a CRT display?

a. Photons

b. Protons

c. Electrons

d. Neutrons

28 . What material is the screen coated with in a CRT display to create the visible
image?

a. Liquid crystals

b. Organic LEDs

c. Phosphor

d. Electrons

Turing Machine MCQs

1. What is the primary purpose of a Turing Machine?

a. To solve linear equations

b. To formalize the concept of computation and algorithms

c. To play chess

d.To model physical phenomena

Answer: B) To formalize the concept of computation and algorithms

2. In Turing Machine notation, what does the symbol Σ\SigmaΣ represent?

a. Tape alphabet
b. Input alphabet
c. Blank symbol
d. Set of states

Answer: B) Input alphabet

3.When does a Turing Machine accept a string?

a. When it enters a non-final state
b. When it halts and does not move
c. When it enters a final state after processing the string
d. When it writes a blank symbol

Answer: C) When it enters a final state after processing the string

4.What does a Turing Machine recognize?

a. All possible inputs
b. The shortest possible string
c. All and only the strings in a language
d. Only the longest string

Answer: C) All and only the strings in a language

5.What is a Turing Machine doing when it enumerates a language?

a. Sorting strings alphabetically
b. Listing all strings in the language
c. Generating random strings
d. Comparing strings

Answer: B) Listing all strings in the language

6. What is an advantage of a Turing Machine with multiple tracks?

a. It can move faster
b. It can simulate more complex computations
c. It uses less tape
d. It has more states

Answer: B) It can simulate more complex computations

7. What is the primary advantage of a Turing Machine with multiple tapes?

a. It requires less memory
b. It simplifies complex computations
c. It is slower
d. It has fewer states

Answer: B) It simplifies complex computations

8 .How does a non-deterministic Turing Machine differ from a deterministic one?

a. It makes a single move from a given state and symbol
b. It can make multiple moves from a given state and symbol
c. It only accepts finite strings
d. It cannot accept strings

Answer: B) It can make multiple moves from a given state and symbol

9.What does the Church-Turing Thesis state?

a. Any function computable by an algorithm can be computed by a Turing machine
b. Only numerical functions can be computed by a Turing machine
c. Turing machines are faster than all other computing models
d. Turing machines cannot simulate real-world processes

Answer: A) Any function computable by an algorithm can be computed by a
Turing machine

10. What is the significance of a Universal Turing Machine?

a. It is the fastest type of Turing machine
b. It can simulate any other Turing machine
c. It can only solve arithmetic problems
d. It cannot be constructed physically

Answer: B) It can simulate any other Turing machine

11. What does computational complexity study?

a. The speed of hardware components
b. The resources required for a Turing Machine to solve a problem
c. The physical size of Turing machines
d. The number of states in a Turing machine

Answer: B) The resources required for a Turing Machine to solve a problem

12. What is an intractable problem?

a. A problem that cannot be solved
b. A problem that cannot be solved in polynomial time
c. A problem with no inputs
d. A problem with infinite solutions

Answer: B) A problem that cannot be solved in polynomial time

13. Why is reducibility important in computational theory?

a. It helps in optimizing algorithms
b. It helps in classifying problems based on their computational complexity
c. It reduces the number of states in a Turing machine
d. It decreases the tape length

Answer: B) It helps in classifying problems based on their computational
complexity

14. Turing machine can be represented using the following tools:

a. Transition graph
b. Transition table
c. Queue and Input tape
d. All of the mentioned

Answer: D) We can represent a turing machine, graphically, tabularly and
diagramatically.

15. We translate a two-dimensional point by adding

a. Translation distances
b. Translation difference
c. X and Y
d. Only a

Answer: D) We can translate 2D point by adding translation distances dx and dy.

16. The translation distances (dx, dy) is called as

a. Translation vector
b. Shift vector
c. Both a and b
d. Neither a nor b

Answer C : The translation distances (dx, dy) from its original position is called as
translation vector or shift vector.

17. The two-dimensional translation equation in the matrix form is

a) P’=P+T

b) P’=P-T

c) P’=P*T

d) P’=p

Answer A: The 2D translation equation is P’=P+T.

18. _________ is a rigid body transformation that moves objects without deformation.

a) Rotation

b) Scaling

c) Translation

d) All of the mentioned

Answer C : Translation a rigid body transformation that moves objects without
deformation.

19. The basic geometric transformations are

a.Translation b. Rotation c. Scaling d.All of the mentioned

Answer D : All of the above

20. Composite transformations increases the number of operations performed in a
series of transformation.

a. True
b. False

Answer B

	UNIT-1 : 2D AND 3D TRANSFORMATION & VIEWING
	2D Transformation
	Homogenous Coordinates
	Translation
	Rotation
	Scaling
	Reflection
	Shear
	X-Shear
	Y-Shear

	Composite Transformation

	Define window and viewport. Derive window to viewport transformation.
	Viewing & Clipping
	Point Clipping
	Line Clipping
	Cohen-Sutherland Line Clippings
	Algorithm

	3D Computer Graphics
	Parallel Projection
	Orthographic Projection
	Translation

	3D Transformation
	Rotation
	Scaling
	Shear
	Transformation Matrices

