
7.1 Introduction to data structure,
list, linked lists and trees

1. Data types,

2. Data structures and abstract data types;

3. Time and space analysis of algorithms (big oh, omega
and theta notations),

4. Linear data structure (stack and queue implementation);

5. Stack application: infix to postfix conversion, and
evaluation of postfix expression,

6. Array implementation of lists;

7. Stack and queues as list; and static list structure,

8. Static and dynamic list structure;

9. Dynamic implementation of linked list;

10. Types of linked list: singly linked list, doubly linked list,
and circular linked list;

11. Basic operations on linked list: creation of linked list,
insertion of node in different positions, and deletion of
nodes from different positions;

12. Doubly linked lists and its applications,

13. Concept of tree, operation in binary tree,

14. Tree search, insertion/deletions in binary tree,

15. Tree traversals (pre-order, post-order and in-order),

16. Height, level and depth of a tree,

17. AVL balanced trees.

Data Types

• A data type in programming, is a classification that specifies which
type of value a variable has and what type of mathematical, relational
or logical operations can be applied to it.

• A data type is the collection of values and a set of operations on the
values.

• For example:
▪ A string is a data type that is used to classify text.

▪ An integer is a data type that is used to classify whole numbers.

Data Structures
• Data is a collection of raw facts on computer in digital form.

• A method of organizing information so that the information can be stored and
retrieved efficiently.

• It is about rendering data elements in terms of relationship for better
organization and storage.

• The structure not only stores data, but also supports operations for accessing and
manipulating the data.

• Computer programmers decide which data structures to use based on the nature
of the data and the processes that need to be performed on that data.

• Data structure affects the design of both structural & functional aspects of a
program.

• Program=Algorithm + Data Structure

Need of Data Structures

• As applications are getting complexed and amount of data is increasing day by
day, there may arise the following problems:

• Processor speed: To handle very large amount of data, high speed processing is
required, but as the data is growing day by day to the billions of files per entity,
processor may fail to deal with that much amount of data.

• Data Search: Consider an inventory size of 106 items in a store, If our application
needs to search for a particular item, it needs to traverse 106 items every time,
results in slowing down the search process.

• Multiple requests: If thousands of users are searching the data simultaneously on
a web server, then there are the chances that a very large server can be failed
during that process

• In order to solve the above problems, data structures are used. Data is organized
to form a data structure in such a way that all items are not required to be
searched and required data can be searched instantly.

Data Structure Operations

• Searching: The process of finding the location of an element within the data structure is
called Searching. There are two algorithms to perform searching, Linear Search and
Binary Search.

• Sorting: The process of arranging the data structure in a specific order is known as
Sorting. There are many algorithms that can be used to perform sorting, for example,
insertion sort, selection sort, bubble sort, etc.

• Insertion: We can also insert new element in a data structure. If the size of data structure
is n then we can only insert n-1 data elements into it.

• Updation: We can also update the element, i.e., we can replace the element with another
element.

• Deletion: We can also perform the delete operation to remove the element from the data
structure.

• Merging: When two lists List A and List B of size M and N respectively, of similar type
of elements, clubbed or joined to produce the third list, List C of size (M+N), then this
process is called merging.

TYPES OF DATA STRUCTURE

There are two types of data structures:

i. Primitive data structure:

- These are the structures which are supported at the machine level, they can be used to make non-primitive data
structures.

- They are primary data types, that are already defined or can be represented by one keyword.

- These are integral and are pure in form. They have predefined behavior and specifications.

- Examples: Integer, float, character, pointers.

- The pointers, however don’t hold a data value, instead, they hold memory addresses of the data values. These are also
called the reference data types.

ii. Non-primitive data structure:

- The non-primitive data structures cannot be performed without the primitive data structures.

- It is a type of data structure that can store the data of more than one type.

- Although, they too are provided by the system itself yet they are derived data structures and cannot be formed without
using the primitive data structures.

Asymptotic Notations

- While analyzing the complexity of any algorithm in terms of time and space, we can never provide an exact number to
define the time required and the space required by the algorithm, instead we express it using some standard notations,
also known as Asymptotic Notations.

- They are the expressions that are used to represent the complexity of an algorithm.

- They are the mathematical notations used to describe the running time of an algorithm when the input tends towards a
particular value or a limiting value.

- Usually, the time required by an algorithm comes under three types:

- Worst case: It defines the input for which the algorithm takes a huge time.

- Average case: It takes average time for the program execution.

- Best case: It defines the input for which the algorithm takes the lowest time

- The commonly used asymptotic notations used for calculating the running time complexity of an algorithm is given below:

- Big oh Notation (O)

- Omega Notation (Ω)

- Theta Notation (θ)

1. Big oh Notation (O) :

- Big Oh notation is used to define the upper bound of an algorithm in terms of Time Complexity.

- It always indicates the maximum time required by an algorithm for all input values. It describes the worst case of an algorithm time
complexity.

- Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If f(n) <= C g(n) for all n >= n0, C >
0 and n0 >= 1. Then we can represent f(n) as O(g(n)).

- f(n) = O(g(n))

- This implies that f(n) does not grow faster than g(n), or g(n) is an upper bound on the function f(n). In this case, we are calculating
the growth rate of the function which eventually calculates the worst time complexity of a function, i.e., how worst an algorithm
can perform.

- In below graph after a particular input value n0, always C g(n) is greater than f(n) which indicates the algorithm's upper bound.

Example : f(n)=2n+3 , g(n)=n

- Now, we have to find Is f(n)=O(g(n))?

- To check f(n)=O(g(n)), it must satisfy the given condition: f(n)<=c.g(n)

- First, we will replace f(n) by 2n+3 and g(n) by n.

→2n+3 <= c.n

- Let's assume c=5, n=1 then: 2*1+3<=5*1 i.e, 5<=5

- For n=1, the above condition is true.

- If n=2 then 2*2+3<=5*2 i.e, 7<=10

- For n=2, the above condition is true.

- We know that for any value of n, it will satisfy the above condition, i.e., 2n+3<=c.n. If c=5, then it will satisfy the condition
2n+3<=c.n. We can take any value of n starting from 1, it will always satisfy. Therefore, we can say that for some constants c
and for some constants n0, it will always satisfy 2n+3<=c.n. As it is satisfying the above condition, so f(n) is big oh of g(n) or
we can say that f(n) grows linearly. Therefore, it concludes that c.g(n) is the upper bound of the f(n).

- The idea of using big o notation is to give an upper bound of a particular function, and eventually it leads to give a worst-
time complexity. It provides an assurance that a particular function does not behave suddenly as a quadratic or a cubic
fashion, it just behaves in a linear manner in a worst-case.

2. Big Omega Notation (Ω)

- It basically describes the best-case scenario which is opposite to the big oh notation.

- It is the formal way to represent the lower bound of an algorithm's running time. It measures the best amount of time an
algorithm can possibly take to complete or the best-case time complexity.

- It determines what is the fastest time that an algorithm can run.

- Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If f(n) >= C g(n) for all n >=
n0, C > 0 and n0 >= 1. Then we can represent f(n) as Ω(g(n)).

- f(n) = Ω(g(n))

- If we required that an algorithm takes at least certain amount of time without using an upper bound, we use big- Ω
notation. It is used to bound the growth of running time for large input size.

Example of Big omega notation:

- If f(n) = 2n+3, g(n) = n,

- Is f(n)= Ω (g(n))?

- It must satisfy the condition: f(n)>=c.g(n)

- To check the above condition, we first replace f(n) by 2n+3 and g(n) by n.

- 2n+3>=c*n

- Suppose c=1

- 2n+3>=n (This equation will be true for any value of n starting from 1).

- Therefore, it is proved that g(n) is big omega of 2n+3 function.

3. Theta Notation (θ)

- The theta notation mainly describes the average case scenarios.

- It represents the realistic time complexity of an algorithm. Every time, an algorithm does not perform worst or best, in real-
world problems, algorithms mainly fluctuate between the worst-case and best-case, and this gives us the average case of
the algorithm.

- Big theta is mainly used when the value of worst-case and the best-case is same.

- It is the formal way to express both the upper bound and lower bound of an algorithm running time.

- Consider function f(n) as time complexity of an algorithm and g(n) is the most significant term. If C1 g(n) <= f(n) <= C2 g(n)
for all n >= n0, C1 > 0, C2 > 0 and n0 >= 1. Then we can represent f(n) as Θ(g(n)).

- f(n) = Θ(g(n))

- In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is greater than f(n) which
indicates the algorithm's average bound.

Example: f(n)=2n+3, g(n)=n

- As c1.g(n) should be less than f(n) so c1 has to be 1 whereas c2.g(n) should be greater than f(n) so c2 is equal to 5. The c1.g(n) is the lower
limit of the of the f(n) while c2.g(n) is the upper limit of the f(n).

- c1.g(n)<=f(n)<=c2.g(n)

- Replace g(n) by n and f(n) by 2n+3

- c1.n <=2n+3<=c2.n

- If c1=1, c2=2, n=1 then 1*1 <=2*1+3 <=2*1

- 1 <= 5 <= 2 // for n=1, it satisfies the condition c1.g(n)<=f(n)<=c2.g(n)

- If n=2

• 1*2<=2*2+3<=2*2

• 2<=7<=4 // for n=2, it satisfies the condition c1.g(n)<=f(n)<=c2.g(n)

• Therefore, we can say that for any value of n, it satisfies the condition c1.g(n)<=f(n)<=c2.g(n). Hence, it is proved that f(n) is big theta of
g(n). So, this is the average-case scenario which provides the realistic time complexity.

Stack :

- Stack is a linear data structure in which the insertion and deletion operations are performed at only one end.

- In a stack, adding and removing of elements are performed at a single position which is known as "top". That means, a new
element is added at top of the stack and an element is removed from the top of the stack.

- In stack, the insertion and deletion operations are performed based on LIFO (Last In First Out) principle.

- In a stack, the insertion operation is performed using a function called "push" and deletion operation is performed using a
function called "pop".

Working of Stack Data Structure

The operations work as follows:

1. A pointer called TOP is used to keep track of the top element in the stack.

2. When initializing the stack, we set its value to -1 so that we can check if the stack is empty by comparing TOP==-1.

3. On pushing an element, we increase the value of TOP and place the new element in the position pointed to by TOP.

4. On popping an element, we return the element pointed to by TOP and reduce its value.

5. Before pushing, we check if the stack is already full

6. Before popping, we check if the stack is already empty

PUSH operation

The steps involved in the PUSH operation is given below:

- Before inserting an element in a stack, we check whether the stack is full.

- If we try to insert the element in a stack, and the stack is full, then the overflow condition occurs.

- When we initialize a stack, we set the value of top as -1 to check that the stack is empty.

- When the new element is pushed in a stack, first, the value of the top gets incremented, i.e., top=top+1, and the element
will be placed at the new position of the top. (stack[top] = value).

- The elements will be inserted until we reach the max size of the stack.

ALGORITHM FOR PUSH OPERATION

1. START

2. Check for stack overflow as if TOP==MAXSIZE-1 then

print "Stack overflow" and exit the program

else

Increase the value of TOP by 1

set TOP=TOP+1

3.Read element to be inserted.

4. set stack[TOP]=element //Insert item in new top position

5.STOP

POP operation

The steps involved in the POP operation is given below:

- Before deleting the element from the stack, we check whether the stack is empty.

- If we try to delete the element from the empty stack, then the underflow condition occurs.

- If the stack is not empty, we first access the element which is pointed by the top

- Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

ALGORITHM FOR POP OPERATION

1. START

2. Check for stack underflow as if TOP<0 then

print "Stack underflow" and exit the program

else

remove the top element and set the element to the variable as

Set Element=stack[TOP]

Decrease TOP by 1 As

Set TOP=TOP-1

3. Print "element" as deleted item from stack

4. STOP

Applications of Stack Data Structure

i. In browsers - The back button in a browser saves all the URLs you have visited previously in a stack. Each time you visit a
new page, it is added on top of the stack. When you press the back button, the current URL is removed from the stack,
and the previous URL is accessed.

ii. In compilers - Compilers use the stack to calculate the value of expressions like 2+4 /5 *(7-9) by converting the
expression to prefix or postfix form.

iii. To reverse a word - Stack is also used for reversing a string/word. For example, we want to reverse "Tesla", so we can
achieve this with the help of a stack.
First, we push all the characters of the string in a stack until we reach the null character.
After pushing all the characters, we start taking out the character one by one until we reach the bottom of the stack.

iv. DFS(Depth First Search): This search is implemented on a Graph, and Graph uses the stack data structure.

v. Expression conversion: Stack can also be used for expression conversion. This is one of the most important applications
of stack. The list of the expression conversion is given below: (Infix to prefix),(Infix to postfix),(prefix to postfix),(prefix to
infix),(postfix to infix),(postfix to prefix).

vi. Backtracking: Suppose we have to create a path to solve a maze problem. If we are moving in a particular path, and we
realize that we come on the wrong way. In order to come at the beginning of the path to create a new path, we have to
use the stack data structure.

Expressions:

- In any programming language, if we want to perform any calculation or to frame a condition etc., we use a set of symbols
to perform the task. These set of symbols makes an expression.

- An expression is a collection of operators and operands that represents a specific value.

- operator is a symbol which performs a particular task like arithmetic operation or logical operation or conditional
operation etc.

- Operands are the values on which the operators can perform the task.

Expression Types

- Based on the operator position, expressions are divided into three types. They are as follows :

1. Infix Expression

2. Postfix Expression

3. Prefix Expression

-

1. Infix Expression:

- In infix expression, operator is used in between the operands.

- It is easy for us humans to read, write, and speak in infix notation but the same does not go well with computing devices.

- An algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

- The general structure of an Infix expression is as follows :

- E.g : A + B, (A +B) * (C+D)

2. Postfix Expression:

- In postfix expression, operator is used after operands. We can say that "Operator follows the Operands".

- The general structure of Postfix expression is as follows :

- E.g: A B +, A B + C D + ∗

3. Prefix Expression :

- In prefix expression, operator is used before operands. We can say that "Operands follows the Operator".

- The general structure of Prefix expression is as follows:

- E.g: + A B, ∗ + A B + C D

Algorithm for Infix to Postfix

1. Read all the symbols one by one from left to right in the given Infix Expression.

2. If the reading symbol is operand, then directly print it to the result (Output).

3. If the reading symbol is left parenthesis '(', then Push it on to the Stack.

4. If the reading symbol is right parenthesis ')', pop it from the stack and print the operator until left parenthesis is found.

5. If incoming symbol has higher precedence than the top of the stack, push it on the stack.

6. If incoming symbol has lower precedence than the top of the stack, pop and print the top. Then test the incoming
operator against the new top of the stack.

7. If incoming symbol has equal precedence than the top of the stack, use associativity rule.

Associativity Left to Right, then pop and print the top of the stack and then push the incoming operator.

Associativity Right to Left, then push the incoming operator.

8. At the end of the expression, pop and print all operators of stack.

Example : (A + B) * (C - D)

A + B➔ Postfix : AB+

Rules

1. Priorities of operators:

• ^ = Highest priority

• *,/ = Next priority

• +,- = Lowest priority

2. No two operators of same priority can stay together in stack column.

3. Lowest priority can not be placed before highest priority.

Q=((A-(B+C))*D)^(E+F)
S.N Symbol Stack Postfix
1 ((
2 (((
3 A ((A

4 - ((- A
5 (((-(A
6 B ((-(AB
7 + ((-(+ AB
8 C ((-(+ ABC
9) ((- ABC+

10) (ABC+-
11 * (* ABC+-
12 D (* ABC+-D
13) ABC+-D*
14 ^ ^ ABC+-D*
15 (^(ABC+-D*
16 E ^(ABC+-D*E
17 + ^(+ ABC+-D*E
18 F ^(+ ABC+-D*EF
19) ^ ABC+-D*EF+

ABC+-D*EF+^

Q=A-B/C*D+E

S.N Symbol Stack Postfix

1 A A

2 - - A

3 B - AB

4 / -/ AB

5 C -/ ABC

6 * -* ABC/

7 D -* ABC/D

8 + + ABC/D*-

9 E + ABC/D*-E

ABC/D*-E+

Q=((A+B)*(C-D))

S.N Symbol Stack Postfix

1 ((

2 (((

3 A ((A

4 + ((+ A

5 B ((+ AB

6) (AB+

7 * (* AB+

8 ((*(AB+

9 C (*(AB+C

10 - (*(- AB+C

11 D (*(- AB+CD

12) (* AB+CD-

13) AB+CD-*

Rules for the conversion of infix to prefix expression:

- First, reverse the infix expression given in the problem.

- Scan the expression from left to right.

- Whenever the operands arrive, print them.

- If the operator arrives and the stack is found to be empty, then simply push the operator into the stack.

- If the incoming operator has higher precedence than the TOP of the stack, push the incoming operator into the stack.

- If the incoming operator has the same precedence with a TOP of the stack, push the incoming operator into the stack.

- If the incoming operator has lower precedence than the TOP of the stack, pop, and print the top of the stack. Test the
incoming operator against the top of the stack again and pop the operator from the stack till it finds the operator of a lower
precedence or same precedence.

- If the incoming operator has the same precedence with the top of the stack and the incoming operator is ^, then pop the
top of the stack till the condition is true. If the condition is not true, push the ^ operator.

- When we reach the end of the expression, pop, and print all the operators from the top of the stack.

- If the operator is ')', then push it into the stack.

- If the operator is '(', then pop all the operators from the stack till it finds) opening bracket in the stack.

- If the top of the stack is ')', push the operator on the stack.

- At the end, reverse the output.

Expression : (A+ B^C)*D + E^5

Step 1 : Reverse the given expression : 5^E+D*)C^B+A(

Step 2 : Make every ‘(‘ as ‘)’ and every ‘)’ as ‘(‘.

5^E+D*(C^B+A)

Step 3 : Convert expression to postfix Expression

Step 4 : Reverse the postfix expression as :

5E^DCB^A+*+

Result: Prefix Expression : +*+A^BCD^E5

S.N Symbol Stack Postfix

1 5 5

2 ^ ^ 5

3 E ^ 5E

4 + + 5E^

5 D + 5E^D

6 * + * 5E^D

7 (+ * (5E^D

8 C + * (5E^DC

9 ^ + * (^ 5E^DC

10 B + * (^ 5E^DCB

11 + + * (+ 5E^DCB^

12 A + * (+ 5E^DCB^A

13) + * 5E^DCB^A+

5E^DCB^A+*+

Queue :

- A queue is a data structure used for storing data (similar to Linked Lists and Stacks).

- In queue, the order in which data arrives is important.

- In general, a queue is a line of people or things waiting to be served in sequential order starting at the beginning of the line
or sequence.

- Queue is an ordered list in which insertions are done at one end (rear/tail) and deletions are done at other end (front/head).

- The first element to be inserted is the first one to be deleted. Hence, it is called First in First out (FIFO) or Last in Last out
(LILO) list.

Queue

The queue has the following conditions:

- If FRONT = 0, then the queue is empty.

- If REAR = size of the queue, then the queue is full.

- If FRONT = REAR, then there is at least one element in the queue.

- If you want to know the total number of elements in the queue, then you use this
formula (REAR – FRONT) +1.

What are the steps to Enqueue Operation into a Data Structure Queue?

• Two pointers – front and rear are maintained by Queues and hence the operations are different from that of Stacks.

• The steps to enqueue (insert) data into a queue are -

1. Check if the queue is full.

2. If the queue is full, produce overflow error and exit.

3. If the queue is not full, increment rear pointer to point the next empty space.

4. Add data element to the queue location, where the rear is pointing.

5. Return success.

Algorithm:

1. Initialize front=-1 ,rear=-1 [Create an empty queue]

2. Input the value to be inserted and assign to variable “data”.

3. for the first element, set the value of FRONT to 0

4. if(rear>=MAXSIZE-1) then display “Queue overflow” and exit.

else

rear=rear+1

5. Queue[rear]=data

6. Exit

Enqueue Operation
Step 1: Check if the queue is full.
Step 2: If the queue is full, Overflow error.
Step 3: If the queue is not full, increment the rear pointer
to point to the next available empty space.
Step 4: Add the data element to the queue location where
the rear is pointing.
Step 5: Here, we have successfully added 7, 2, and -9.

What are the steps to Dequeue Operation into a Data Structure Queue?

1. Check if the queue is empty.

2. If the queue is empty, produce underflow error and exit.

3. If the queue is not empty, access the data where front is pointing.

4. Increment front pointer to point to the next available data element.

5. Return success.

Algorithm:

1. If (rear<front) or if (front==-1 and rear==-1) [Checking for empty queue]

 Display queue is empty and exit.

2. Else data=queue[front]

3. front=front+1

4. Exit

Dequeue Operation

Obtaining data from the queue comprises two subtasks:
access the data where the front is pointing and remove the
data after access.
Step 1: Check if the queue is empty.
Step 2: If the queue is empty, Underflow error.
Step 3: If the queue is not empty, access the data where the
front pointer is pointing.
Step 4: Increment front pointer to point to the next available
data element.
Step 5: Here, we have removed 7, 2, and -9 from the queue
data structure

Circular Queue:

- A circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle
and the last position is connected back to the first position to make a circle.

- In Circular Queue, all the nodes are represented as circular.

- It is similar to the linear Queue except that the last element of the queue is connected to the first element.

- It is also known as Ring Buffer as all the ends are connected to another end.

- There was one limitation in the array implementation of queue. If the rear reaches to the end position of the Queue then
there might be possibility that some vacant spaces are left in the beginning which cannot be utilized. So, to overcome such
limitations, the concept of the circular queue was introduced.

 front Rear

 0 1 2 3 4

1 2

3. Priority Queue :

- priority queue is another special type of Queue data structure in which each element has some priority associated with it.

- Based on the priority of the element, the elements are arranged in a priority queue.

- It behaves similarly to the normal queue except that each element has some priority, i.e., the element with the highest
priority would come first in a priority queue.

- If two elements has same priority then they are processed according to the order in which they were added to the queue.

- The priority of the elements in a priority queue will determine the order in which elements are removed from the priority
queue.

- The priority queue supports only comparable elements, which means that the elements are either arranged in an ascending
or descending order.

Implementation of the Priority Queue in Data Structure

We can implement the priority queues in one of the following ways:

- Linked list

- Binary heap

- Arrays

- Binary search tree

Note : The binary heap is the most efficient method for implementing the priority queue in the data structure.

Types of Priority Queue:

1. Ascending Priority Queue: In this type of priority queue, elements can be inserted into any order but only the smallest
element can be removed.

2. Descending Priority Queue: In this type of priority queue, elements can be inserted into any order but only the largest
element can be removed.

Representation of priority queue

We will create the priority queue by using the list given below in which INFO list contains the data elements, PRIORITY list
contains the priority numbers of each data element available in the INFO list, and POINTER basically contains the address of the
next node.

Lowest value = Highest priority

address INFO PRIORITY POINTER

0 200 2 4

1 400 4 2

2 500 4 6

3 300 1 0

4 100 2 5

5 600 3 1

6 700 4

Applications of Priority Queue:

- used in operating system like priority scheduling, load balancing and interrupt handling.

- used in Dijkstra's shortest path algorithm.

- used in data compression techniques like Huffman code.

- Used in heap sort.

4. Deque (Double Ended Queue) :

- Deque is a linear data structure in which the insertion and deletion operations are performed from both ends. We can say
that deque is a generalized version of the queue.

- Deque can be used both as stack and queue as it allows the insertion and deletion operations on both ends.

Types of Deque

1. Input-restricted queue: The input-restricted queue means that some restrictions are applied to the insertion. In input-
restricted queue, the insertion is applied to one end while the deletion is applied from both the ends.

2. Output-restricted queue: The output-restricted queue means that some restrictions are applied to the deletion operation.
In an output-restricted queue, the deletion can be applied only from one end, whereas the insertion is possible from both
ends.

Applications of Deque

- can be used as a stack and queue; therefore, it can perform both redo and undo operations.

- Undo-redo operations in software applications.

- Implementing task scheduling for multiple processors (multiprocessor scheduling) [A-steal job scheduling algorithm].

- used as a palindrome checker means that if we read the string from both ends, then the string would be the same.

Operations on Deque

- Insert at front

- Delete from end

- insert at rear

- delete from rear

Linked List

- When we want to work with an unknown number of data values, we use a linked list data structure to organize that data.

- It is a collection of objects called nodes that are randomly stored in the memory.

- A node contains two fields i.e. data stored at that particular address and the pointer which contains the address of the next
node in the memory.

A linked list has the following properties:

- Successive elements are connected by pointers

- The last element points to NULL

- Can grow or shrink in size during execution of a program

- Can be made just as long as required (until systems memory exhausts)

- Does not waste memory space (but takes some extra memory for pointers). It allocates memory as list grows.

Limitations of Array

- The size of array must be known in advance before using it in the program.

- Increasing size of the array is a time taking process. It is almost impossible to expand the size of the array at run time.

- All the elements in the array need to be contiguously stored in the memory. Inserting any element in the array needs shifting
of all its predecessors.

Linked list is the data structure which can overcome all the limitations of an array. Using linked list is useful because:

- It allocates the memory dynamically. All the nodes of linked list are non-contiguously stored in the memory and linked
together with the help of pointers.

- Sizing is no longer a problem since we do not need to define its size at the time of declaration. List grows as per the
program's demand and limited to the available memory space.

Advantages of using Linked List

- The chances of memory wastage are minimum because memories are allocated dynamically as the requirement of the user.

- Insertions and deletions can be done easily. It does not need movement of elements for insertion and deletion.

- It can be extended or reduced according to requirements.

- Elements may or may not be stored in consecutive memory locations so if we do not have consecutive memory available,
even then we can store the data in computer.

- It is less expensive.

- Data structures such as stack and queues can be easily implemented using linked list.

Linked Lists ADT

 The following operations make linked lists an ADT:

 Main Linked Lists Operations

- Insert: inserts an element into the list

- Delete: removes and returns the specified position element from the list

Auxiliary Linked Lists Operations

- Delete List: removes all elements of the list (disposes the list)

- Count: returns the number of elements in the list.

- Find nth node from the end of the list.

Operations of Linked List

1. Traversing a linked list.

2. Append a new node (to the end) of a list

3. Prepend a new node (to the beginning) of the list

4. Inserting a new node to a specific position on the list

5. Deleting a node from the list

6. Updating a node in the list

Types of Linked List

1. Singly Linked List

2. Doubly Linked List

3. Circular Linked List

4. Doubly Circular Linked List

1. Singly Linked List:

- Each node has a single link to another node.

- Each node stores the contents of the node and a reference to the next node in the list.

- It does not store any pointer any reference to the previous node.

- It has successor and predecessor. First node does not have predecessor while last node does not have successor. Last node
have successor reference as NULL.

- It has two successive nodes linked together in linear way and contains address of the next node to be followed.

- It has only single link for the next node.

- In this type of linked list, only forward sequential movement is possible, no direct access is allowed.

Singly Linked List Insertion

Insertion into a singly-linked list has three cases:

- Inserting a new node before the head (at the beginning)

- Inserting a new node after the tail (at the end of the list)

- Inserting a new node at the middle of the list (random location)

Insert a Node at the beginning of Linked List

- Suppose START is the first position in linked list.

- Let DATA be the element to be inserted in the new node.

- POS is the position where the new node is to be inserted.

- TEMP is a temporary pointer to hold the node address.

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA (given from user)

4. If (START==NULL)

 (a) NewNode → next = NULL

 Else

 (a) NewNode → next = START

 5. START = NewNode

 6. Exit

Insert a Node at the end of Linked List

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA

4. NewNode → Next = NULL

5. If (START == NULL)

 START = NewNode

 Else

 (a) TEMP = START

 (b) While (TEMP → Next !=NULL)

 TEMP = TEMP → Next

6. TEMP → Next = NewNode

7. Exit

Inserting a new node at the middle of the list (random location)

1. Input DATA and POS to be inserted

2. Initialize TEMP = START; and i = 1

3. for(i=1;i<POS;i++)

 (a) TEMP = TEMP->Next

 (b) If (TEMP == NULL)

 i. Display “Less Number of nodes than POS”

 ii. Exit

4. Create a New Node

5. NewNode → DATA = DATA

6. NewNode → Next = TEMP → Next

7. TEMP → Next = NewNode

8. Exit

Singly Linked List Deletion

Similar to insertion, here we also have three cases.

- Deleting the first node

- Deleting the last node

- Deleting an intermediate node.

Deleting the first node in Singly Linked List

1. If START== NULL

 print(‘ No Nodes in the list’)

 Else

2. Temp= START

3. START=START→ Next;

4. temp→ Next= NULL

5. free(temp)

Deleting the last node in Singly Linked List

1. If START== NULL

 print(‘ No Nodes in the list’)

 Else

2. Initialize: Temp= START

 While (Temp→ Next !=NULL)

 {

 prevNode=Temp

 Temp=Temp→ Next

 }

3. prevnode→ Next= NULL

4. free(temp)

Deleting at specific position at Singly Linked List

1. If START== NULL

 print(‘ No Nodes in the list’)

 Else

2. Temp= START,i=1

 for(i=1;i<POS;i++)

 {

 Temp=Temp→ Next

 }

3. Nextnode= Temp→ Next

4. Temp→ Next = Nextnode→ Next

5. free(nextnode)

2. Doubly Linked List

- It is complex type of linked list which contains a pointer to the next as well as the previous node in the sequence.

- It consists of three parts—data, a pointer to the next node (next pointer), and a pointer to the previous node (previous
pointer).

- In double linked list, the first node must be always pointed by head.

- Always the previous field of the first node must be NULL.

- Always the next field of the last node must be NULL.

Doubly Linked List Insertion

Insertion into a doubly-linked list has three cases (same as singly linked list):

- Inserting a new node before the head.

- Inserting a new node after the tail (at the end of the list).

- Inserting a new node at the middle of the list.

Insert a Node at the beginning of Linked List

- Suppose START is the first position in linked list.

- Let DATA be the element to be inserted in the new node.

- POS is the position where the new node is to be inserted.

- TEMP is a temporary pointer to hold the node address.

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA (given from user)

4. NewNode → prev = NULL

5. NewNode → Next = NULL [optional]

6. START → prev = NewNode

7. NewNode → Next = START

8. START = NewNode

Doubly Linked List Deletion

Similar to insertion, here we also have three cases.

- Deleting the first node

- Deleting the last node

- Deleting an intermediate node.

Deleting the first node in Doubly Linked List

1. If START== NULL

 print(‘ List is Empty’)

 Else

2. Temp= START

3. START=START→ Next;

4. START → prev= NULL

5. free(temp)

6. Exit

Circular Linked List / Circular singly linked list

- It is a sequence of elements in which every element has a link to its next element in the sequence and the last element has a
link to the first element.

- In single linked list, every node points to its next node in the sequence and the last node points NULL. But in circular linked
list, every node points to its next node in the sequence but the last node points to the first node in the list.

Circular Linked List Insertion

Insertion into a circular linked list has three cases:

- Inserting a new node before the head (at the beginning)

- Inserting a new node after the tail (at the end of the list)

- Inserting a new node at the middle of the list (random location)

Inserting a new node at the beginning in Circular linked list

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode → DATA = DATA (given from user)

4. Temp = START

5. While (Temp→ Next != START)

 {

 Temp= Temp → Next

 }

6. NewNode → next = START

7. Temp → Next = NewNode

8. Start = NewNode

9. Exit

Circular Linked List Deletion

Similar to insertion, here we also have three cases.

- Deleting the first node

- Deleting the last node

- Deleting an intermediate node.

Deleting the first node in Circular Linked List

1. If START== NULL

 print(‘ Empty List’)

 Else

2. Temp= START

3. While (Temp → Next != START)

 {

 Temp = Temp → Next

 }

4. Temp → Next = Start → Next

5. START = Temp → Next

6. Exit

Circular Linked List Deletion

Similar to insertion, here we also have three cases.

- Deleting the first node

- Deleting the last node

- Deleting an intermediate node.

Deleting the first node in Circular Linked List

1. If START== NULL

 print(‘ Empty List’)

 Else

2. Temp= START

3. While (Temp → Next != START)

 {

 Temp = Temp → Next

 }

4. Temp → Next = Start → Next

5. START = Temp → Next

6. Exit

Tree:

- Tree is a hierarchical data structure which stores the information naturally
in the form of hierarchy style.

- It is a collection of nodes that are linearly connected and don't have any
cyclic relations .

- It represents the nodes connected by edges.

Tree Example : Modules of federal Government

Properties :

- There is one and only one path between every pair of vertices in a tree.

- A tree with n vertices has exactly (n-1) edges.

- A graph is a tree if and only if it is minimally connected.

- Any connected graph with n vertices and (n-1) edges is a tree.

Binary Tree :

- It is a tree in which every node can have a maximum of two children.

- In a binary tree, every node can have either 0 children or 1 child or 2 children
but not more than 2 children.

- One is known as left child and the other is known as right child.

Types of binary tree

I. Strictly Binary Tree

II. Complete Binary Tree

III. Almost Complete Binary Tree

I. Strictly Binary Tree:

- every node should have exactly two children or none.

- also called as Full Binary Tree or Proper Binary Tree.

II. Complete Binary Tree :

- A binary tree in which every internal node has exactly two children and all leaf
nodes are at same level is called Complete Binary Tree.

- In it, all the nodes must have exactly two children and at every level of complete
binary tree there must be 2 level number of nodes.

- For example at level 2 there must be 2^2 = 4 nodes and at level 3 there must be
2^3 = 8 nodes.

- Also called perfect binary tree.

III. Almost Complete Binary Tree :

- A Binary Tree is almost complete Binary Tree if all levels are completely filled
except possibly the last level and the last level has all keys as left as possible.

- A binary tree of depth d is an almost binary tree if:
• Any node ‘nd’ at level less than‘d-1’ has two sons.

• For any node ‘nd’ in the tree with a right descendant at level d, nd must have a left son
and every left descendant of nd is either a leaf at level d or has two sons.

Binary Tree Traversal :

- Traversing a binary tree is the process of visiting each node in the tree exactly
once in a systematic way.

 There are three popular methods of traversal:

i. Inorder traversal

ii. Preorder traversal

iii. Postorder traversal

i. Inorder traversal (LeftChild - Root - RightChild) :

-The Inorder traversal of a nonempty binary tree is defined as follows:

• Traverse the left sub-tree in Inorder

• Visit the root node

• Traverse the right sub-tree in Inorder

ii. Preorder traversal (Root - LeftChild - RightChild) :

The preorder traversal of a nonempty binary tree is defined as follows:

• Visit the root node

• Traverse the left sub-tree in preorder

• Traverse the right sub-tree in preorder

iii. Postorder traversal (LeftChild – RightChild - Root) :

The postorder traversal of a nonempty binary tree is defined as follows:

• Traverse the left sub-tree in postorder

• Traverse the right sub-tree in postorder

• Visit the root node

Preorder: 10,5,6,20,30,25,23,24,26,40

Post order: 6,5,24,23,26,25,40,30,20,10

In order: 5,6,10,20,23,24,25,26,30,40

Preorder: ABCEIFJDGHKL

Post order: IEJFCGKLHDBA

In order: EICFJBGDKHLA

Construction of binary tree from given inorder and preorder sequence

• In preorder sequence, leftmost element (first element) is the root of the tree.

• In Inorder sequence, the root of the tree is in between the left subtree and right
subtree.

Algorithmic Steps:

Step 1: Scan the preorder sequence from left to right. Pack an element ‘X’ from preorder
and increment the preorder index value.

Step 2: Find the picked element ‘X’ in the inorder sequence.

Step 3: Build the tree using ‘X’ as a root node and before ‘X’ as left subtree of ‘X’ and after
‘X’ as right subtree of ‘X’

Step 4: Repeat step 1 to 3 for each symbol in preorder sequence.

Construct the binary tree considering the following sequences:

Inorder: DBEAFC

Preorder: ABDECF

Solution: In a preorder sequence, A is first node. So, A is root node of tree. From inorder
sequence, we can conclude that DBF are left subtree of A and FC are right subtree of A.

B is the second element of preorder sequence. Here, we can write that from inorder
sequence, D is the left subtree of B and E is the right subtree of B.

Similary, F is the left subtree of C. Final binary tree is :

Construct the binary tree considering the following sequences:

Inorder: 4,5,6,3,1,8,7,9,11,10,12

Preorder: 1,3,5,4,6,7,8,9,10,11,12

Solution: 1 is the first element of preorder.

• 3 is the second element of preorder. So, from inorder sequence we can write: 4,5,6 are left
subtree of 3 and there is no any right subtree of 3.

• Similarly, for 5, 4 is the left subtree and 6 is the right subtree.

• 8 is left subtree 0f 7 and 9,11,10,12 are right subtree of 7.

• 10,11,12 are right subtree of 9 and there is no any

left subtree of 9.

• 11 is the left subtree of 10 and 12 is the right subtree of 10.

• The final binary tree is:

Construction of binary tree from given inorder and postorder sequence

• In postorder sequence, rightmost element (last element) is the root of the
tree.

• In Inorder sequence, the root of the tree is in between the left subtree and
right subtree.

Algorithmic Steps:

• Step 1: Scan the postorder sequence from right to left. last element from
the postorder sequence is the root of the tree.

• Step 2: Search the same element in inorder sequence when the element is
found in inorder sequence, then all the elements present before the node
found are left child or subtree and all the elements present after the node
found are right children or subtree of node found.

• Step 3: Repeat step 1 to 3 for each symbol in postorder sequence.

Construct the binary tree considering the following sequences:

Inorder: 20, 30, 35,40,45,50,55,60,70

Postorder: 20,35,30,45,40,55,70,60,50

Solution: 50 is the root node of the tree.

• For 55,60 and 70, 60 is the root of 55 and 70 from postorder sequence and
55 is left child and 70 is right child of 60 from inorder sequence.

• Similarly, 20, 30, 35 are left childs of 40 and 45 is the right child of 40.

• Similarly, 20 is the left child of 30 an 35 is the right child of 30. Hence, final
binary tree is:

• Construct the binary tree considering the following sequences:

Inorder: 2,6,8,10,11,12,15,20,22,27,30

Postorder: 6,2,10,12,11,8,22,30,27,20,15

Solution: 15is the root node of the tree.

• For 22,30,27 and 20, there is no left subtree of 20 element and 22,27,30 are
right subtree of 20.

• For 22,27 and 30,22 is the left child and 30 is the right child of 27.

• For 2,6,8,10,11 and 12; 2 ad 6 are left child of 8 and 10, 11 and 12 are right
child.

• Similarly, final binary tree of given sequence is:

Binary Search Tree

- A binary Search Tree is a binary tree that satisfied the following conditions:

 1. The data elements of left sub tree are smaller than the root of the tree.

2. The data elements of right sub tree are greater than or equal to the root of the
tree.

 3. The left sub tree and right sub tree are also the binary search trees, i.e. they
must also follow the above two rules.

Operations on Binary search Tree

Following operations can be done in BST:

• Search(k, T): Search for key k in the tree T. If k is found in some node of tree
then return true otherwise return false.

• Insert(k, T): Insert a new node with value k in the info field in the tree T such
that the property of BST is maintained.

• Delete(k, T):Delete a node with value k in the info field from the tree T such that
the property of BST is maintained.

• FindMin(T), FindMax(T): Find minimum and maximum element from the given
nonempty BST.

Insertion in Binary Search Tree

• In a binary search tree, the insertion operation is performed with O(log n) time
complexity. In binary search tree, new node is always inserted as a leaf node.

• The insertion operation is performed as follows...

1. Create a NewNode with given value and set its left and right to NULL .

2. Check whether tree is Empty.

3: If the tree is Empty, then set root to NewNode.

4: If the tree is Not Empty, then check whether value of NewNode is smaller or
larger than the node (here it is root node).

5: If NewNode is smaller than or equal to the node, then move to its left child. If
NewNode is larger than the node, then move to its right child.

6: Repeat the above until we reach a node (i.e, reach to NULL) where search
terminates.

7: After reaching a last node, then insert the NewNode as left child if NewNode is
smaller or equal to that node else insert it as right child.

• Construct Binary search Tree : 10,12,5,4,20,8,7,15 and 13

Construct binary search tree : 45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81

Deletion Operation in BST

Case 1: Deleting a leaf node(a node with no children)

• Find the node to be deleted using search operation

• Delete the node using free function (if it is a leaf) and terminate the function.

Case 2: Deleting a node with one child

• Find the node to be deleted using search operation

• If it has only one child then create a link between its parent node and child
node.

• Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children

Step 1 - Find the node to be deleted using search operation.

Step 2 - If it has two children, then find the largest node in its left subtree (OR)
the smallest node in its right subtree.

Step 3 - Swap both deleting node and node which is found in the above step.

Step 4 - Then check whether deleting node came to case 1 or case 2 or else goto
step 2

Step 5 - If it comes to case 1, then delete using case 1 logic.

Step 6- If it comes to case 2, then delete using case 2 logic.

Step 7 - Repeat the same process until the node is deleted from the tree.

Balanced Search Tree

• A balanced binary tree is the one with every node not having much of difference
in height of left and right subtree.

 • Searching and Traversing will be much more efficient if the tree is balanced.

• For making a balanced search tree, different types of balancing trees are used.
Some of them are:

 • Different types of balancing tree
- AVL balanced tree

- B-tree

- Red Black tree

AVL Tree

• G. M. Adelson-Velskii and E. M. Landis introduced a binary tree structure that is
balanced with respect to the height of sub-trees.

• Height balanced tree

• AVL tree is self balancing binary search tree in which

 - the balance factor of every node is either -1, 0, or +1

 - the balance factor is calculated as: HL -HR = -1, 0, or 1

 where, HL and HR are the heights of left and right subtrees for any given node

 - the left subtree and right subtree should be again AVL

 - if the difference is more than one, then the tree is rebalanced by applying
certain rules of rotation

Rules ofRotation
• The 4 kinds of rotation are:

• left – left rotation
• a single ‘left’ rotation

• right – right rotation
• a single ‘right’ rotation

• left – right rotation
• a ‘left’ rotation followed by a ‘right’ rotation

• right – left rotation
• a ‘right’ rotation followed by a ‘left’ rotation

left – left rotation (right of right)

Insert 1, 2, 3

right – right rotation (leftof left)

Insert 3, 2, 1

left – right rotation (right of left)

Insert 3, 1, 2

right – left rotation (leftof right)

Insert 1, 3, 2

1. Sequentially Insert the given data 3,2,1,4,5,6,7,16,15,14,13,12,11 into AVL tree.

Insert 6

Insert 7

Insert 15 and 16

Insert 14

Insert 13

Insert 12 Insert 11

2. Insert the data sequentially to create AVL tree: 10,20,30,40,50,60,70

3. Sequentially insert 14,17,11,7,53,4,13,12,8 into AVL tree and show each imbalance steps.

4. Insert sequentially 15,20,24,10,13,7,30,36,25 into AVL tree.

Introduction to data
structures, list, linked list

and trees

of

MCQs Practice

Q. In a stack, if a user tries to remove an element from an
empty stack it is called _________

A. Underflow

D. C.

B. Empty collection

Overflow Garbage Collection

Q.

A.

D. C.

B.

Pushing an element into stack already having five elements and

stack size of 5, then stack becomes ___________

Overflow Crash

Underflow User flow

Q.

A.

D. C.

B.

Circular Queue is also known as ________

Ring Buffer Square Buffer

Rectangle Buffer Curve Buffer

Q.

A.

D. C.

B.

If the elements “A”, “B”, “C” and “D” are placed in a queue and
are deleted one at a time, in what order will they be removed?

ABCD DCBA

DCAB ABDC

Q.

A.

D. C.

B.

A data structure in which elements can be inserted or deleted
at/from both ends but not in the middle is?

Priority queue

Queue Circular queue

Dequeue

Q.

A.

D. C.

B.

Which of the following is not the type of queue?

Ordinary queue Single ended queue

Circular queue Priority queue

Q.

A.

D. C.

B.

Which of these is not an application of a linked list?

To implement file systems For separate chaining in hash-tables

To implement non-binary trees Random Access of elements

Q.

A.

D. C.

B.

What differentiates a circular linked list from a normal linked
list?

You cannot have the ‘next’ pointer
point to null in a circular linked list

It is faster to traverse the circular linked
list

You may or may not have the ‘next’
pointer point to null in a circular linked
list

Head node is known in circular linked list

Q.

A.

D. C.

B.

Which of the following application makes use of a circular
linked list?

Undo operation in a text editor Recursive function calls

Allocating CPU to resources Implement Hash Tables

Q.

A.

D. C.

B.

What does ‘stack overflow’ refer to?

accessing item from an undefined stack adding items to a full stack

removing items from an empty stack index out of bounds exception

Q.

A.

D. C.

B.

Which of the following data structures can be used for
parentheses matching?

n-ary tree queue

priority queue stack

Q.

A.

D. C.

B.

In linked list implementation of a queue, front and rear
pointers are tracked. Which of these pointers will change
during an insertion into a NONEMPTY queue?

Only front pointer Only rear pointer

Both front and rear pointer No pointer will be changed

Q.

A.At the head of link list

D. C.

B. At the centre position in
the link list

In linked list implementation of a queue, from where is the
item deleted?

At the tail of the link list Node before the tail

Q.

A.

D. C.

B.

Out of the following operators (|, *, +, &, $), the one having
lowest priority is ________

+ $

| &

Q.

A.

D. C. ^

B.

Out of the following operators (^, *, +, &, $), the one having
highest priority is _________

$

&

+

Q.

A.

D. C.

B.

What data structure is used when converting an infix notation
to prefix notation?

Stack Queue

B-Trees Linked-list

Q.

A.one

D. C.

B.

How many stacks are required for applying evaluation of infix
expression algorithm?

two

three four

Q.

A. True B. False

Evaluation of infix expression is done based on precedence of
operators

Q.

A. 0

D. 3 C. 2

B. 1

What is the maximum number of children that a binary tree
node can have?

Q. How many common operations

are performed in a binary tree?

A.1

D.4 C.3

B.2

Q.

A.1

D.3 C.2

B.4

How many orders of traversal are applicable to a binary tree (In
General)?

Q. To obtain a prefix expression, which

of the tree traversals is used?

A. Level-order traversal

D. C.

b) Pre-order traversal

Post-order traversal In-order traversal

Q.

A. A, C, D, B, E

D. D, B, E, A, C
C. c) A, B, C, E, D

B. b) A, B, C, D, E

Consider the following data. The pre order traversal of a binary
tree is A, B, E, C, D. The in order traversal of the same binary
tree is B, E, A, D, C. The level order sequence for the binary tree
is _________

Q.

A. Height

D. Width C. Length

B. Depth

The number of edges from the root to the node is called
__________ of the tree

Q.

A. Each node has exactly
zero or two children

D. Each node has exactly one
or two children

C. All the leaves are
at the same level

B. Each node has exactly
two children

What is a full binary tree?

Q.

A. Height

D.width C. length

B. Depth

The number of edges from the node to the deepest leaf is
called _________ of the tree.

Q. Given an empty AVL tree, how would you

construct AVL tree when a set of numbers are given

without performing any rotations?

A. just build the tree
with the given input

D.use dynamic programming
to build the treeC. use trial and error

B. find the median of the set of
elements given, make it as root and

construct the tree

Answer: b

	Slide 1: 7.1 Introduction to data structure, list, linked lists and trees
	Slide 2: Data Types
	Slide 3: Data Structures
	Slide 4: Need of Data Structures
	Slide 5: Data Structure Operations
	Slide 6: TYPES OF DATA STRUCTURE
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Rules
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Queue
	Slide 32
	Slide 33: Enqueue Operation
	Slide 34
	Slide 35: Dequeue Operation
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Construction of binary tree from given inorder and preorder sequence
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Construction of binary tree from given inorder and postorder sequence
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125: Rules of Rotation
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

