
3.4 Features of Object-oriented
Programming

Operator Overloading:

• It is a type of polymorphism in which an operator is overloaded to give user-defined meaning.

• To add two integers we will use + operator.

• To add or concatenate two strings we use + operator.

How to overload the Operator:

- an operator function is defined inside a class to overload an operator.

Syntax:

Class class_name

{

Public:

return_type operator sign(args)

{

}

};

Syntax:
i. Class function:
return_type operator op(){
Body;
}
ii. Frined function:
Friend return_type operator op (args);

Rules for operator overloading:

• Only existing members can be overloaded, we can not create our own
operator to overload.

• The overloaded operator must have at least one operand of the user-
defined type.

• It follows the syntax rules of the original operator. This means we can not
change the basic meaning of operators.

• Some operators can not be overloaded:
• Member access operator (.)
• Pointer to member access operator (.*)
• Scope resolution operator (::)
• Size operator (size of)
• Ternary operator (?:)

• We can not use friend function to overload some operators.

Overloading unary operator:
• Unary operator: operators which contains only one operator and one

operand i.e. +a.

• Binanry operator: operator which contains one operator and two
operands i.e. a+b.

• Unary operators are the increment and decrement operators ++ and --

Overloading

Binary

Function
Overloading

Unary

Operator
Overloading

Friend
Function

Class
Function

Class
Function

Friend
Function

Data Conversion:
• Conversion of data of one type to another type.

• Types:

1. Basic/primitive data type- int, float, char.

2. User-defined data type: class, structure.

Combinations:

a. Basic to basic: automatic { int x, float y=3.14; x=y; cout<<x; print x=3;}

b. Basic to user-defined.

c. User-defined to basic

d. User-defined to user-defined

- Basic to user-defined:

Test t1;

Int x=6;

T1=x; //basic to user-defined conversion.
- It is done by the constructor with one argument of basic type

as follows:

Class test

{

 private:

 public:

 test (data_type)

 {

 // conversion code;

 }

};

- User-defined to Basic:
int x;
test t1;
x=t1; // user-defined to basic
-We need type casting operator function.
-Typecast function:
operator data_type()
 {
 return (datatype-value);
 }

- User-defined to User-defined:
test t1; // test t1,t2; t1=t2; this is the possible objects are in
the same class. Using copy constructor

sample s1;
t1=s1; // not possible because there are two
different classes. User-defined to user-defined.
- Ways two- constructor and type casting
operator function.

Introduction:
• Inheritance is a relationship between two or more classes where

derived class inherits the properties of base class is called inheritance.

• Base class: it is a class whose properties are inherited by another class.
It is also called as super class or parent class.

• Derived class: it is a class that inherits the properties from base class.
It is also called as sub class or child class.

• Eg: Base class Derived class

student Graduate student, under graduate student

shape Triangle, rectangle, circle, cube

employee Faculty, staff

Defining derived class

• Syntax:
Class derived_class_name: visibility mode (optional access specifier) base
class_name
{
----------- members of derived class
}
*Why and when to use inheritance:
Eg: consider a group of vehicles (classes:bus, car, and truck)
Methods-> fuelamount(), capacity(), applybrake(); these three methods are
the same for three classes. These increases chance of error and data
redundancy to avoid these type of situation inheritance is used.

Access Specifier:

Constructor and Destructor in derived class:
• Constructors are special member methods invoked during object creation

that are used for initialization.
• Have the same name as the class.
• No return type is specified
• Can be overloaded
• Go into the public section of the class declaration.

• Destructors are special member methods that are called on each instance of
an object used to release the memory and other resources associated with
an instance after it is no longer needed.
• Have the same name as the class preceded with a tilde(~)
• Invoked automatically when an object is destroyed
• Have no return type and no params
• Only one destructor is allowed per class, so there is no overloading of Destructors
• Called when a local object goes out of scope or when you delete a pointer to an object.
• When an object goes out of scope, the destructors are called on each instance of an

object in the order that the objects were created

• https://www.geeksforgeeks.org/c-plus-plus-gq/operator-overloading-
gq/

• https://www.geeksforgeeks.org/c-plus-plus-gq/inheritance-gq/

• 13. operator overloading: 1. operator 2. constructor 3. casting
operator 4. member function , friend function 5. member

• 1. c 2. c 3. b 4. b 5. a

• 14. Inheritance: 1. Inheritance 2. base class 3. derived class 4.
Access specifier 5. single inheritance

• 1. a 2. b 3. a 4. d 5 a

https://www.geeksforgeeks.org/c-plus-plus-gq/operator-overloading-gq/
https://www.geeksforgeeks.org/c-plus-plus-gq/operator-overloading-gq/
https://www.geeksforgeeks.org/c-plus-plus-gq/inheritance-gq/

	Slide 1: 3.4 Features of Object-oriented Programming
	Slide 2: Operator Overloading:
	Slide 3: Rules for operator overloading:
	Slide 4: Overloading unary operator:
	Slide 5: Data Conversion:
	Slide 6
	Slide 7: Introduction:
	Slide 8: Defining derived class
	Slide 9
	Slide 10: Access Specifier:
	Slide 11
	Slide 12: Constructor and Destructor in derived class:
	Slide 13
	Slide 14
	Slide 15

