
Unit- 3.2

Pointer Arithmetic

Operations:
1.Increment/Decrement of a Pointer
2.Addition of integer to a pointer
3.Subtraction of integer to a pointer
4.Subtracting two pointers of the same

type
5.Comparison of pointers
1. Increment/Decrement of a Pointer:

- increments by the number equal
to the size of the data type for which it is a
pointer.

- If an integer pointer that
stores address 1000 is incremented by size
of an integer new address will be 1004.

- for float it will also be
incremented by 4 size of float ie 1004

• For decrement comes under subtraction,
same as increment.

• Eg: int 1000; it will be decremented by size of
int and new address is 996.

2. Addition of integer to a pointer:

Ptr = ptr+5 (ptr = 1000+size of int*5) = 1020

3. Subtraction of integer to a
pointer:

• Ptr = ptr-5 (ptr = 1000-size of int*5)
= 980

4. Subtraction of Two Pointers:
ptr1(address:1000) and ptr2(addre
ss:1004); difference between
addresses is 4 bytes; Since the size
of int is 4 bytes, therefore
the increment between ptr1 and
ptr2 is given by (4/4) = 1.

5. Comparison of Pointers
>, >=, <, <=, ==, !=

Pointer and Array:

int n[4] = {25, 50, 75, 100};

// Get the value of the first
element n[0] in n

printf("%d", *n);

Output:25

A[0] a[1] a[2] a[3]

*a *(a+1) *(a+2) *(a+3)

int myNumbers[4] =
{25, 50, 75, 100};

// Get the value of the
second element in myNumbers
printf("%d\n", *(myNumbers
+ 1));

// Get the value of the third
element in myNumbers
printf("%d", *(myNumbers
+ 2));

Output:

50

75

Practice Problems
- If ptr is a pointer to int, having value ptr=100. After
ptr++, what is the value of ptr?

a. 100 b. 101 c. 102 d. 103

- A Pointer is?

a. A keyword used to create variables.

b. A variable that stores address of an instruction.

c. A variable that stores address of other variable.

d. All of the above

- What is the output?

void main()
{
 int *pc, c;
 c = 5;
 pc = &c;
 printf("%d", *pc);
}

a. Address of c b. 5 c. address of pc d.
error

More practice: https://gtu-mcq.com/BE/Civil-
Engineering/Semester-
1/3110003/3819/MCQs?q=9aZHDjblmRk=

-A pointer value refers to

a. A float value b. An integer constant

c. Any valid address in memory d. none

- Address stored in the pointer variable is of type

a. Integer b. Floating c. hexadecimal

 d. Charcter

- Consider the 32 bit compiler. We need to store address
of integer variable to integer pointer. What will be the
size of integer pointer?

a. 6 bytes b. 2 bytes c. 4 bytes d. 10 bytes

- void main()
{
 int* pc, c;
 c = 5;
 pc = &c;
 c = 1;
 printf("%d, %d", c,*pc);
}

a. 1,1 b. 1,5 c. 5,1 d. error

https://gtu-mcq.com/BE/Civil-Engineering/Semester-1/3110003/3819/MCQs?q=9aZHDjblmRk=
https://gtu-mcq.com/BE/Civil-Engineering/Semester-1/3110003/3819/MCQs?q=9aZHDjblmRk=
https://gtu-mcq.com/BE/Civil-Engineering/Semester-1/3110003/3819/MCQs?q=9aZHDjblmRk=

Pointer to function

• int *f(int a); /*
function f returning
an int* */

• int (*g)(int a); /*
pointer g to a
function returning an
int */

• auto(*fp)()->int;

• Structure Vs Union;

• A user can access
individual members at a
given time.

• In a union, A user can
access only one member
at a given time.

- Which of the following operator is used to select a member of a
structure variable.

a. . (dot) b. , (comma) c. : (colon) d. ;
(semicolon)

- What is the size of a C structure?

a. C structure is always 128 bytes.

b. Size of C structure is the total bytes of all elements of
structure.

c. Size of C structure is the size of largest element

d. None of these

- find output

#include<stdio.h>

void main()

{

 int x = 10, y = 20;

int *p = &x, *q = &y; *p = *q;

*q = 30;

 printf("%d, %d", x,y);

}

a. x = 10, y = 20 b. x = 20, y = 30 c. x = 30, y = 20
d. x = 30, y = 30

- Which of the following cannot be a structure member?

a. Another structure b. Array

c. Function d. none

-Find the output

#include<stdio.h>

void main(){

int *p, *q;

int x = 10, y = 20;

p = &x;

q = &y;

*p++;

++*q;

p = q;

*p = *q + 1;

printf("%d", *p);

}

a. 20 b. 21 c. 22 d. 23

Array of Structures

• passing structure to function

• Pass by value (passing actual value
as argument)

• Pass by reference (passing address
of an argument)

Structure and pointer

• Declare a Structure Pointer
• struct structure_name *ptr;

• Initialization of the Structure
Pointer
• ptr = &structure_variable;

• Access Structure member using
pointer:

1.Using (*) asterisk or indirection
operator and dot (.) operator.

2.Using arrow (->) operator or
membership operator.

Input/output operations on files

• Opening file:
• FILE *fopen(const char * filename,

const char * mode);

• For practice problem:

• https://letsfindcourse.com/tech
nical-questions/c/file-handling

https://letsfindcourse.com/technical-questions/c/file-handling
https://letsfindcourse.com/technical-questions/c/file-handling

Sequential and Random Access to File.

	Slide 1: Unit- 3.2
	Slide 2: Pointer Arithmetic
	Slide 3
	Slide 4: Pointer and Array:
	Slide 5: Practice Problems
	Slide 6: Pointer to function
	Slide 7
	Slide 8: Array of Structures
	Slide 9: Structure and pointer
	Slide 10: Input/output operations on files
	Slide 11
	Slide 12: Sequential and Random Access to File.

