BJT Basic

Q1. A transistor has

- 1. one pn junction
- 2. two pn junctions
- 3. three pn junctions
- 4. four pn junctions

Answer: 2

Q2. The number of depletion layers in a transistor is

- 1. four
- 2. three
- 3. one
- 4. two

Answer: 4

Q3. The base of a transistor is.....doped

- 1. heavily
- 2. moderately
- 3. lightly
- 4. none of the above

Answer: 3

Q4. The element that has the biggest size in a transistor is

- 1. collector
- 2. base
- 3. emitter
- 4. collector-base-junction

Answer:1

Q5. In a pnp transistor, the current carriers are

- 1. acceptor ions
- 2. donor ions
- 3. free electrons
- 4. holes

Q6. The collector of a transistor isdoped

- 1. heavily
- 2. moderately
- 3. lightly
- 4. none of the above

Answer: 2

Q7. A transistor is a.....operated device

- 1. current
- 2. voltage
- 3. both voltage and current
- 4. none of the above

Answer:1

Q8. In a npn transistor,.....are the minority carriers

- 1. free electrons
- 2. holes
- 3. donor ions
- 4. acceptor ions

Answer: 2

Q9. The emitter of a transistor isdoped

- 1. lightly
- 2. heavily
- 3. moderately
- 4. none of the above

Answer: 2

Q10. In a transistor, the base current is aboutof emitter current

- 1. 25%
- 2. 20%
- 3. 35 %
- 4. 5%

Q11. At the base-emitter junctions of a transistor, one finds

- 1. a reverse bias
- 2. a wide depletion layer
- 3. Iow resistance
- 4. none of the above

Answer: 3

Q12. The input impedance of a transistor is

- 1. high
- 2. Iow
- 3. very high
- 4. almost zero

Answer: 2

Q13. The output impedance of a transistor is

- 1. high
- 2. zero
- 3. Iow
- 4. very low

Answer:1

Q. In a transistor, signal is transferred from a...... circuit

- 1. high resistance to low resistance
- 2. Iow resistance to high resistance
- 3. high resistance to high resistance
- 4. Iow resistance to low resistance

Answer : 2

Q. The arrow in the symbol of a transistor indicates the direction of

.....

- 1. electron current in the emitter
- 2. electron current in the collector

- 3. hole current in the emitter
- 4. donor ion current

Q. Most of the majority carriers from the emitter

- 1. recombine in the base
- 2. recombine in the emitter
- 3. pass through the base region to the collector
- 4. none of the above

Answer :3

Q. The current I_B is

- 1. electron current
- 2. hole current
- 3. donor ion current
- 4. acceptor ion current

Answer:1

Q. In a transistor

 $I_{\rm C} = I_{\rm E} + I_{\rm B}$

 $I_{B} = I_{C} + I_{E}$

 I_{E} = $I_{\mathsf{C}} - I_{\mathsf{B}}$

 $I_{E} = I_{C} + I_{B}$

Answer: 4

Q. A heat sink is generally used with a transistor to

- 1. increase the forward current
- 2. decrease the forward current
- 3. compensate for excessive doping
- 4. prevent excessive temperature rise

Answer: 4

Q. The most commonly used semiconductor in the manufacture of a transistor is

- 1. germanium
- 2. silicon

- 3. carbon
- 4. none of the above

BJT Configuration

Q16. The value of α of a transistor is

- 1. more than 1
- 2. less than 1
- 3. 1
- 4. none of the above

Answer: 2

Q17. $I_{C} = \alpha I_{E} + \dots$

- 1. I_B
- $2. \ I_{\text{CEO}}$
- 3. I_{CBO}
- 4. βI_B

Answer: 3

Q19. In a tansistor, $I_C = 100$ mA and $I_E = 100.2$ mA. The value of β is

- 1. 100
- 2.50
- 3. about 1
- 4. 200

Answer:4

Q20. In a transistor if β = 100 and collector current is 10 mA, then I_E is

- 1. 100 mA
- 2. 100.1 mA
- 3. 110 mA
- 4. none of the above

Answer: 2

Q21. The relation between β and α is

1. $\beta = 1 / (1 - \alpha)$ 2. $\beta = (1 - \alpha) / \alpha$ 3. $\beta = \alpha / (1 - \alpha)$ 4. $\beta = \alpha / (1 + \alpha)$

Q22. The value of β for a transistor is generally

- 1. 1
- 2. less than 1
- 3. between 20 and 500
- 4. above 500

Answer: 3

Q23. The most commonly used transistor arrangement isarrangement

- 1. common emitter
- 2. common base
- 3. common collector
- 4. none of the above

Answer:1

Q24. The input impedance of a transistor connected inarrangement is the highest

- 1. common emitter
- 2. common collector
- 3. common base
- 4. none of the above

Answer: 2

Q25. The output impedance of a transistor connected inarrangement is the highest

- 1. common emitter
- 2. common collector
- 3. common base
- 4. none of the above

Answer: 3

Q26. The phase difference between the input and output voltages in a common base arrangement is

- 1. 180°
- 2. 90°
- 3. 270°
- 4. 0°

Q27. The power gain in a transistor connected in.....arrangement is the highest

- 1. common emitter
- 2. common base
- 3. common collector
- 4. none of the above

Answer:1

Q28. The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is

- 1. 0°
- 2. 180°
- 3. 90°
- 4. 270°

Answer: 2

Q29. The voltage gain in a transistor connected inarrangement is the highest

- 1. common base
- 2. common collector
- 3. common emitter
- 4. none of the above

Answer: 3

Q30. As the temperature of a transistor goes up, the base-emitter resistance

•••••

- 1. decreases
- 2. increases
- 3. remains the same
- 4. none of the above

Answer:1

Q31. The voltage gain of a transistor connected in common collector arrangement is

- 1. equal to 1
- 2. more than 10
- 3. more than 100
- 4. less than 1

Q32. The phase difference between the input and output voltages of a transistor connected in common collector arrangement is

- 1. 180°
- 2. 0°
- 3. 90°
- 4. 270°

Answer: 2

Q33. If the value of α is 0.9, then value of β is

- 1. 9
- 2. 0.9
- 3. 900
- 4.90

Answer: 4

Q46. When transistors are used in digital circuits they usually operate in the

- 1. active region
- 2. breakdown region
- 3. saturation and cutoff regions
- 4. linear region

Answer: 3

Q A current ratio of I_C/I_E is usually less than one and is called

- 1. beta
- 2. theta
- 3. alpha
- 4. omega

QA transistor has a β_{DC} of 250 and a base current, I_B , of 20 $\[mu]$ A. The collector current, I_C , equals to

- $1.\ 500\ \mu A$
- 2.5 mA
- 3. 50 mA
- 4.5A

Answer: 2

Q Voltage-divider bias provides

- 1. an unstable Q point
- 2. a stable Q point
- 3. a Q point that easily varies with changes in the transistor's current gain
- 4. a Q point that is stable and easily varies with changes in the transistor's current gain

Answer: 2

Q To operate properly as a amplifier, a transistor's base-emitter junction must be forward biased with reverse bias applied to which junction?

- 1. collector-emitter
- 2. base-collector
- 3. base-emitter
- 4. collector-base

Answer: 4

Q54. The ends of a load line drawn on a family of curves determine

- 1. saturation and cutoff
- 2. the operating point
- 3. the power curve
- 4. the amplification factor

Answer:1

Q The C-B configuration is used to provide which type of gain?

- 1. voltage
- 2. current
- 3. resistance
- 4. power

Q57. The Q point on a load line may be used to determine

- $1. \ V_C$
- $2. \ V_{\text{CC}}$
- 3. V_B
- 4. I_C

Answer: 3

Q58. A transistor may be used as a switching device or as a

- 1. fixed resistor
- 2. tuning device
- 3. rectifier
- 4. variable resistor

Answer: 4

Q59. If an input signal ranges from $20-40 \ Partial$ A (microamps), with an output signal ranging from .5–1.5 mA (milliamps), what is the ac beta?

- 1. 0.05
- 2. 20
- 3.50
- 4. 500

Answer: 3

Q60. Beta's current ratio is

- 1. I_C/I_B
- 2. I_C/I_E
- 3. I_B/I_E
- 4. I_E/I_B

Answer: 1

Q61. A collector characteristic curve is a graph showing

- 1. emitter current (I_E) versus collector-emitter voltage (V_{CE}) with (V_{BB}) base bias voltage held constant
- 2. collector current (I_C) versus collector-emitter voltage (V_{CE}) with (V_{BB}) base bias voltage held constant
- 3. collector current (I_C) versus collector-emitter voltage (V_C) with (V_{BB}) base bias voltage held constant

4. collector current (I_C) versus collector-emitter voltage (V_{CC}) with (V_{BB}) base bias voltage held constant

Answer: 2

Q62. With low-power transistor packages, the base terminal is usually the

- 1. tab end
- 2. middle
- 3. right end
- 4. stud mount

Answer: 2

Q63. When a silicon diode is forward biased, $\,V_{\text{BE}}$ for a CE configuration is $\ldots \ldots$

- 1. voltage-divider bias
- 2. 0.4 V
- 3. 0.7 V
- 4. emitter voltage

Answer: 3

Q64. What is the current gain for a common-base configuration where $I_E = 4.2$ mA and $I_C = 4.0$ mA?

- 1. 16.8
- 2. 1.05
- 3. 0.2
- 4. 0.95

Answer: 4

Q65. With a PNP circuit, the most positive voltage is probably

- 1. ground
- 2. V_C
- 3. V_{BE}
- $4. \ V_{CC}$

Answer: 1

Q66. If a 2 mV signal produces a 2 V output, what is the voltage gain?

- 1. 0.001
- 2. 0.004
- 3. 100
- 4. 1000

Q67. Most of the electrons in the base of an NPN transistor flow

- 1. out of the base lead
- 2. into the collector
- 3. into the emitter
- 4. into the base supply

Answer: 2

Q68. In a transistor, collector current is controlled by

- 1. collector voltage
- 2. base current
- 3. collector resistance
- 4. all of the above

Answer: 2

Q69. Total emitter current is

- $1. \ I_E I_C$
- 2. $I_C + I_E$
- 3. I_B + I_C
- 4. $I_B I_C$

Answer: 3

Q70. Often a common-collector will be the last stage before the load; the main function(s) of this stage is to

- 1. provide voltage gain
- 2. provide phase inversion
- 3. provide a high-frequency path to improve the frequency response
- 4. buffer the voltage amplifiers from the low-resistance load and provide impedance matching for maximum power transfer

- 1. collector-emitter
- 2. base-emitter
- 3. collector-base
- 4. cathode-anode

Answer: 1

Q72. The input/output relationship of the common-collector and commonbase amplifiers is

- 1. 270 degrees
- 2. 180 degrees
- 3. 90 degrees
- 4. 0 degrees

Answer: 4

Q73. If a transistor operates at the middle of the dc load line, a decrease in the current gain will move the Q point

- 1. off the load line
- 2. nowhere
- 3. up
- 4. down

Answer: 4

Q74. Which is the higher gain provided by a CE configuration?

- 1. voltage
- 2. current
- 3. resistance
- 4. power

Q75. What is the collector current for a CE configuration with a beta of 100 and a base current of 30 " A?

- 1. 30 µ A
- 2. 0.3 ^µ A
- 3. 3 mA
- 4. 3 MA