
Software Engineering and Object-
Oriented Analysis & Design

Instructor: Bhanu Bhakta Joshi

Topic 1: Software process and requirements

❖Software characteristics

▪ Functionality: Requirements and Specifications

▪Usability: Easy to use and understand.

▪Reliability: Free of defects and performs consistently and accurately under

different conditions and scenarios.

▪ Performance: Runs efficiently and quickly handling large amounts of data or

traffic.

▪ Scalability: Handle increasing workload and can be extended to meet the

changing Requirements.

▪Testability: Easy to test and validate, and it has a comprehensive test coverage.

▪ Security: Unauthorized access and safety from malicious attacks.

▪Maintainability: Easy to change and update. Must be well-documented, so

that it can be understood and modified by other developers.

▪Reusability: Reused in other projects or applications

❖ Software quality attributes

▪ Portability: Transportable

▪Efficiency: CPU time, memory and
disk usage, response time.

▪Correctness: SRS document is
properly enforced.

❖ Software process model

1. Agile Model

• Combination of iterative and
incremental models.

• Adaptability and Customer satisfaction.

• Created mainly to make changes in the
middle of software development so that
the software project can be completed
quickly.

• Customer representative .

• Demo of working software is given to
understand the customer’s
requirements.

• Delivery of Incremental versions of the
software.

• Agile has the following models:

1. Scrum: Scrum master.

2. Crystal methods: Different projects require different processes.

3. DSDM: Dynamic system Development Method.

4. Feature driven development (FDD):Blends several industry-recognized best

practices into a cohesive whole.

5. Lean software Development: Focuses on optimizing efficiency by eliminating

waste, enhancing learning, making decisions as late as possible.

6. Extreme programming (xp):Key practices include pair programming, test-driven

development, frequent releases in short development cycles.

2. V Model

• Also called Verification and Validation
Model.

• The execution of each process is
sequential.

• Software development and testing
activities take place at the same time.

• V-Design the left side represents the
development activity, the right side
represents the testing activity.

Key Characteristics of the V-Model:

1.Sequential and Rigid.

2.Verification and Validation at Each Step.

3.Early Detection of Defects.

4.No Overlapping Phases.

3. Iterative Model

• Started with some software
specifications and the first version of
the software is developed.

• After first version if there is a need to
change the software, then a new
version of the software is created with
a new iteration.

• The Iterative Model allows accessing
earlier phases, in which the variations
can be made.

• Iterative model is used when
requirements are defined clearly, easy
to understand, large application and
requirement of changes in future.

Key Features of the Iterative Model

1. Repetition of Development Phases

2. Incremental Delivery

3. Flexibility to Change

4. Early and Continuous Feedback

5. Risk Management

6. Frequent Testing

7. Progressive Refinement

4. Prototype Model

• A prototype of the end product is first
developed, tested, and refined as per
customer feedback repeatedly till a
final acceptable prototype is achieved
which forms the basis for developing
the final product.

• Used when the customers do not know
the exact project requirements
beforehand.

Key features of Prototype model

• Early Prototype Development

• User Involvement and Feedback

• Iterative Refinement

• Early Detection of Issues

5.Big Bang Model

• Do not follow any specific process.

• Begins with the necessary resources
and efforts.

• The result may or may not be as per the
customer's requirement because in this
model the customer requirements are
not defined.

• Ideal for small projects like academic
projects or practical projects.

• Used when the size of the developer
team is small, requirements are not
defined and the release date is not
confirmed.

Key features of big bang model

• Single Development Phase

• No Detailed Planning

• All-in-One Release

• Late Testing and Debugging

• High Risk of Failure

❖ Computer-aided software engineering

• Implementation of computer-facilitated tools and methods in software
development.

• Ensures high-quality and defect-free software.

• Helps designers, developers, testers, managers and others to see the project
milestones during development.

• CASE illustrates a wide set of labor-saving tools that are used in software
development.

• The essential idea of CASE tools is that in-built programs can help to analyze
developing systems that enhances quality and provide better outcomes.

Types of CASE Tools

▪Diagramming Tools: Diagrammatic and graphical representations of the data and

system processes, represents system elements, control flow and data flow among

different software components and system structures in a pictorial form. For

example, Flow Chart Maker tool for making state-of-the-art flowcharts.

▪Computer Display and Report Generators: These help in understanding the

data requirements and the relationships involved.

▪Analysis Tools: It focuses on inconsistent, incorrect specifications involved in the

diagram and data flow. It helps in collecting requirements, automatically check

for any irregularity, imprecision in the diagrams, data redundancies, or erroneous

omissions.

▪Central Repository: It provides a single point of storage for data diagrams,

reports, and documents related to project management.

• Documentation Generators: helps in generating user and technical

documentation as per standards. It creates documents for technical users and end

users. For example, Doxygen, DrExplain, Adobe RoboHelp for documentation.

• Code Generators: It aids in the auto-generation of code, including definitions,

with the help of designs, documents, and diagrams.

• Tools for Requirement Management: It makes gathering, evaluating, and

managing software needs easier.

• Tools for Analysis and Design: It offers instruments for modelling system

architecture and behavior, which helps throughout the analysis and design stages

of software development.

• Tools for Database Management: It facilitates database construction, design,

and administration.

• Tools for Documentation: It makes the process of creating, organizing, and

maintaining project documentation easier.

❖ Functional and non-functional Requirements

Functional requirements

• Functional requirements define a function that a system or system element must be
qualified to perform and must be documented in different forms.

• All these functionalities need to be necessarily incorporated into the system as a
part of the contract.

• These are represented or stated in the form of input to be given to the system, the
operation performed, and the output expected.

• Example:

• What are the features that we need to design for this system?

• What are the edge cases we need to consider, if any, in our design?

Non-Functional requirements

• These are the quality constraints that the system must satisfy according to
the project contract.

• The priority or extent to which these factors are implemented varies from
one project to another.

• They are also called non-behavioral requirements.

• Non-functional requirements specify the software's quality attribute.

• They ensure a better user experience, minimizes the cost factor.

• Basic non-functional requirements are - usability, reliability, security,
storage, cost, flexibility, configuration, performance, legal or regulatory
requirements, etc.

• Execution qualities like security and usability, which are observable at run time.

• Evolution qualities like testability, maintainability, extensibility, and scalability
that embodied in the static structure of the software system.

• Example:

➢Each request should be processed with the minimum latency?

➢System should be highly valuable.

❖ User requirements

• These requirements describe what the end-user wants from the software system.

• User requirements are usually expressed in natural language.

• Gathered through interviews, surveys, or user feedback.

• Characteristics of Good User Requirements:

➢Clear and Unambiguous

➢Complete

➢Consistent

➢Verifiable

➢Prioritized

➢Feasible

➢Traceable

❖ System requirement

• These requirements specify the technical characteristics of the software system,
such as its architecture, hardware requirements, software components, and
interfaces.

• System requirements are typically expressed in technical terms and are often
used as a basis for system design.

❖ Interface specification

• A point where two systems ,subjects, organization's etc. meet and interact.

• Interface=system/environment.

• A specification is an agreement between the produce of the services consumer of
that services.

• There are 4 types of interface specification:

➢Procedural interface : Calling existing program by new program(API).

➢Data structures : Passed from one subsystem to another. Graphical data model.

➢Representation of data : Ordering of bits. Common in embedded and real time
system.

➢Message passing interface : Sub system requesting service from another sub
system. Used in Distributed system and parallel processing.

Interface specification Cycle

❖ The software requirements documents

• Complete specification and description of requirements of the software.

SRS parts:

1. Introduction

• Purpose: Describe the SRS's purpose and target audience.

• Scope: Outline the software's scope and main functionalities.

• Definitions, Acronyms, Abbreviations: Define terms used.

• References: List relevant documents and resources.

• Overview: Briefly describe the document structure.

2. Overall Description

• Product Perspective: Context and relation to other systems.

• Product Functions: Key functions the software will perform.

• User Characteristics: Typical user profiles and expertise levels.

• Constraints: Design or implementation limitations.

• Assumptions and Dependencies: Assumptions made and external dependencies

3. Specific Requirements

• Functional Requirements: Detailed functions, often using use cases.

• Example Use Case: User Login

• Primary Actor: User

• Preconditions: User must be registered.

• Postconditions: User is logged in.

• Main Scenario: Steps for a successful login.

• Extensions: Handling invalid credentials.

• Non-Functional Requirements: Criteria like performance, usability, security.

• Performance: Response time, throughput.

• Security: Authentication, data protection.

• Usability: User interface design.

4. External Interface Requirements

• User Interfaces: Look and feel of the interface.

• Hardware Interfaces: Interactions with hardware.

• Software Interfaces: Interactions with other software.

• Communication Interfaces: Communication protocols.

5. System Features

• Detailed description of system features, their purpose, and behavior.

6.Other Requirements

• Data Management: Data models and database requirements.

• Operational Requirements: Operating environment and support needs.

• Legal and Regulatory Requirements: Compliance requirements.

7. Appendices

• Additional information like glossaries, diagrams, and supporting documents.

❖ Requirement’s elicitation and analysis

• Requirements Elicitation is the process to find out the requirements for an
intended software system by communicating with client, end users, system users
and others who have a stake in the software system development.

• There are various ways to discover requirements:

➢Interviews

➢Surveys

➢Questionnaires

➢Task analysis

➢Domain Analysis

➢Brainstorming

➢Prototyping

➢Observation

❖ Requirement’s validation and management.

• Requirements validation techniques are essential processes used to ensure that
software requirements are complete, consistent, and accurately reflect what the
customer wants.

• Helps to identify and fix issues early in the development process.

• reduces the risk of costly errors.

• Different type of test to check the requirements.

1.Completeness checks

2.Consistency checks

3.Validity checks

4.Realism checks

5.Ambiguity checks

6.Variability

Requirement validation techniques:

1.Test Case Generation

2.Prototyping

3.Requirement reviews

4.Automated Consistency Analysis: CASE tool is used

5. Walk throughs

6.Simulation

7.Checklists for Validation

THANK YOU

	Default Section
	Slide 1: Software Engineering and Object-Oriented Analysis & Design
	Slide 2: Topic 1: Software process and requirements
	Slide 3

	Untitled Section
	Slide 4: Software quality attributes
	Slide 5: Software process model
	Slide 6
	Slide 7
	Slide 8: Key Characteristics of the V-Model:
	Slide 9
	Slide 10: Key Features of the Iterative Model
	Slide 11
	Slide 12: Key features of Prototype model
	Slide 13
	Slide 14: Key features of big bang model
	Slide 15: Computer-aided software engineering
	Slide 16
	Slide 17
	Slide 18: Functional and non-functional Requirements
	Slide 19: Functional requirements
	Slide 20: Non-Functional requirements
	Slide 21
	Slide 22: User requirements
	Slide 23: System requirement
	Slide 24: Interface specification
	Slide 25: Interface specification Cycle
	Slide 26: The software requirements documents
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Requirement’s elicitation and analysis
	Slide 32
	Slide 33: Requirement’s validation and management.
	Slide 34
	Slide 35
	Slide 36

