
Topic 5: Object-oriented Design

❖Analysis to Design
• Object-oriented design is the process of planning a system of interacting objects 

for the purpose of solving a software problem. It is one approach to software 

design.

Input

• The output of object -oriented analysis is provided as input to object -oriented 

design.

• Analysis and design may occur in parallel with incremental and iterative process.

• Conceptual model, use case, system sequence diagram, UI documentation and 

relational data model(OPTIONAL) are the input artifacts.



Design

With the help of the input artifacts, we can conclude the following:

➢Define object and class diagram from conceptual model.

➢Attributes are identified.

➢A description of solution to a common problem (design patterns) are used.

➢Application framework is defined.

➢The persistent objects or data are identified.

➢The remote objects are identified and defined.

Output

• Sequence diagram and design class diagram are the typical output artifacts of 
object-oriented design.



❖ Describing and Elaborating Use cases

Class Responsibility Collaboration (CRC) Cards

• CRC (Class, Responsibility, Collaboration) cards are a design tool used in object-

oriented programming to capture and organize information about classes, their 

responsibilities, and their collaborations within a software system.

• It is a text-oriented modelling techniques or tools used in design of object-
oriented software.

• It is a paper index cards in which the responsibilities and collaborators of classes 
are written.

• Each card represents a single class.



Responsibility

• A Responsibility is anything that the 
class knows or does.

Collaborators

• A Collaborator is another class that is 
used to get information for or perform 
actions for the class at hand.



Realization of Use case

• It represents the implementation of use case in terms of collaborating 

objects.

• It may include textual document, class diagrams of participating classes and 

interaction diagrams.



UML Interaction Diagram

• Interaction diagram shows how objects interact via messages.

• It is used for dynamic object modelling.

• It is of two types. They are as follows:

1. Sequence diagram

2. Communication or collaboration diagram

Sequence Diagram

• A sequence diagram shows the interaction among objects as a two-dimensional 
chart, in a fence format, in which each new object is added to the right.

• The objects participating are shown at the top of the chart as boxes attached to a 
vertical dashed line.



• The name of object with a semicolon separating it from the name of the class is 
written inside the box.

• The name of object and the class is underlined.

• The vertical dashed line indicates the lifeline of objects.

• The rectangle drawn on the lifeline is called activation symbol, which indicates 
that the object is active as long the rectangle exists.

• Each message is indicated as an arrow between the lifeline of two objects.

• The messages are shown in chronological order.

• Each message is labeled with the message name.

• It shows the time sequence of messages.

• It has large set of detailed notation options.

• It is forced to extend to right when new objects are added, which consumes 

horizontal space, making it difficult to view by the user.





❖ Collaboration Diagram

• Is a behavioral diagram which is also referred to as a communication diagram, It 
illustrates how objects or components interact with each other to achieve specific 
tasks or scenarios within a system.

• Collaboration diagram shows both structural and behavioral aspects.

• Structural aspect includes objects and link between them.

• It illustrates the object interactions in a graph format in which objects can be 
placed anywhere.

• The link between objects is shown as a solid line.

• The messages are labelled with arrow and prefixed with sequence number.



Symbols in Collaboration Diagram



Job Recruiter System



❖ Objects and Patterns

Patterns

• Patterns is a way of doing something.

• Design pattern is a category of patterns that deals with object-oriented software.

• Design pattern is a general repeatable solution to a commonly occurring problem 

in software design.

• It is a description for how to solve a problem that can be used in many different 

situations.



• OOAD design patterns that are frequently used include the following:

➢ Creational Patterns: These patterns focus on the techniques involved in the 

creation of objects, helping in their appropriate creation. Examples include the 

Factory Method pattern, Builder pattern, and Singleton pattern.

➢ Structural Patterns: Structural patterns deal with object composition and class 

relationships, aiming to simplify the structure of classes and objects. Examples 

include the Adapter pattern, Composite pattern, and Decorator pattern.

➢ Behavioral Patterns: Behavioral patterns address how objects interact and 

communicate with each other, focusing on the delegation of responsibilities 

between objects. Examples include the Observer pattern, Strategy pattern, and 

Command pattern.

➢ Architectural Patterns: These patterns provide high-level templates for 

organizing a software system’s general structure. Examples include the Model-

View-Controller (MVC) pattern Layered Architecture pattern, and 

Microservices pattern.



Frameworks

• Framework is a group of concrete classes which can be directly implemented on 
an existing platform.

• They are written in programming languages.

• They are concerned with specific application domain.

• Frameworks in Object-Oriented Analysis and Design (OOAD) are reusable, 
customizable structures that provide a foundation for developing software 
applications.

• Typically consist of pre-defined classes, interfaces, and design patterns that 
encapsulate common functionalities and architectural decisions.

• They streamline the development process by offering a set of conventions, 
guidelines, and tools that developers can leverage to build applications more 
efficiently.



Patterns vs Frameworks

• Scope: Design patterns are about solving specific problems, while frameworks 
provide a broad structure for developing applications.

• Implementation: Patterns are implemented at the design level, while frameworks 
offer libraries and tools that developers use to build software.

• Flexibility: Design patterns can be adapted and implemented in various ways, 
while frameworks often have specific rules and structures that must be followed.



❖ Determining Visibility
• It is the ability of an object to have a reference to another object.

• It indicates the scope of the objects.

• For a sender object to send message to a receiver object, the sender must be 

visible to the receiver.

• There are four ways to achieve visibility.

➢Attribute Visibility

• Attribute visibility from A to B exists when B is an attribute of A.

• It is relatively permanent i.e. it persists as long as A and B both exists.

➢Parameter Visibility

• Parameter visibility from A to B exists when B is passed as a parameter to a 
method of A.



• It is relatively temporary i.e. it exists within the scope of the method.

• It is generally transformed into attribute visibility within a method

➢Local Visibility

• Local visibility from A to B exists when B is declared as a local object within a 

method of A.

• It is temporary as it persists only within the scope of the method.

• It can be achieved by:

1. Create a new local instance and assign it to local variable.

2. Assign returning object from a method invocation to a local variable.

➢Global Visibility

• Global visibility from A to B exists when B is global to A. It is permanent.

• It can be achieved by:

1. Assign an instance to a global variable.



• In object-oriented design, visibility refers to the accessibility of classes, methods, 
and attributes in relation to other parts of a program. It's primarily controlled by 
access modifiers, which dictate how and where these elements can be accessed. 
The main access modifiers are:

1.Public: Members are accessible from anywhere in the program.

2.Private: Members are accessible only within the defining class, promoting 
encapsulation and hiding implementation details.

3.Protected: Members are accessible within the defining class and its subclasses, 
allowing for controlled inheritance.



❖ Class Diagrams

• Class diagram is used for static modeling that illustrates classes, interfaces and 
their relationships.

• It shows the structural view of the system.

Class notation



❖ Class Diagrams



Relationships between classes

➢Association

• It enables objects to communicate with each other.

• It describes a connection between classes.

• A link is the physical or conceptual connection between object instances.

• The association relationship of a class with itself is known as recursive 

association.

• It is represented by drawing a straight line between concerned classes.

• Arrow -head can be used to indicate reading direction.

• The multiplicity is noted on each side.



➢Aggregation

• It is the association in which the involved classes represent a whole-part 

relationship.

• It takes the responsibility of leadership.

• When an instance of one object contains instances of some other objects, then 

aggregation exists between composite object and component object.

• It is represented by a diamond symbol at the end of a relationship.

• It can never be recursive and symmetric.

➢Composition

• It is the strict form of aggregation, in which the parts are existence-dependent on 

whole.

• It is represented as a filled diamond drawn at composite end.

• The part instance can only be the part of one composite at a time.



• Creation and deletion of parts is managed by composite.

➢Inheritance (Generalization and Specialization)

• It describes 'is a kind of' relationships between classes.

• Object of derived class inherits the properties of base class.

• It is defined statically.

➢Dependency

• It indicates that one element has knowledge of another element.

• It states that a change in specification of one thing may affect another thing using 

it, but not necessarily the reverse.

• It depicts non-attribute visibility between classes.

➢Realization

• It indicates the implementation of functionality defined in one class by 

another class.



Class Diagram Relation

relationships

https://ioesolutions.esign.com.np/storage/uploads/relationships_1598075605.jpg


THANK YOU


	Default Section
	Slide 1: Topic 5: Object-oriented Design
	Slide 2
	Slide 3: Describing and Elaborating Use cases
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Collaboration Diagram
	Slide 10
	Slide 11
	Slide 12: Objects and Patterns
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Determining Visibility
	Slide 17
	Slide 18
	Slide 19: Class Diagrams
	Slide 20: Class Diagrams
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Class Diagram Relation
	Slide 25


