4.6 Hardware descripts language and IC technology (ACtE0406)

VHDL Overview

- 1. What does VHDL stand for?
 - A) Very High Description Language
 - B) Very High-Density Language
 - C) VHSIC Hardware Description Language
 - D) VLSI Hardware Design Language
- 2. What is the primary use of VHDL?
 - A) Programming microcontrollers
 - B) Designing digital circuits
 - C) Writing software applications
 - D) Simulating analog circuits
- 3. Which of the following is a key feature of VHDL?
 - A) Object-oriented programming
 - B) Concurrent execution
 - C) Sequential execution only
 - o D) None of the above
- 4. VHDL is primarily used for designing and simulating which type of systems?
 - A) Analog systems
 - B) Digital systems
 - C) Mechanical systems
 - D) Chemical processes
- 5. Which of the following is a valid data type in VHDL?
 - A) Integer
 - B) Character
 - C) Time
 - D) All of the above
- 6. Which of the following statements is true about VHDL?
 - A) VHDL is case-sensitive
 - B) VHDL is case-insensitive
 - C) VHDL only supports uppercase keywords
 - D) VHDL only supports lowercase keywords
- 7. In VHDL, what is the purpose of the "library" keyword?
 - A) To include code from other VHDL files
 - B) To import specific packages
 - C) To define a logic gate
 - D) To declare variables
- 8. Which VHDL construct is used to model the behaviour of digital circuits?
 - A) Procedure
 - B) Entity
 - C) Process
 - D) Block

- 9. The entity in VHDL is used to describe:
 - A) Internal signals
 - B) The external interface of a digital component
 - \circ C) The timing constraints
 - D) None of the above

10. Which of the following is true about VHDL signals?

- A) They are used to store constants
- B) They are used for inter-process communication
- C) They cannot be updated
- o D) They are similar to variables in software programming
- 11. Which of the following describes the behaviour of an entity in VHDL?
 - A) Architecture
 - B) Process
 - C) Function
 - o D) Package
- 12. In VHDL, which construct allows for the definition of reusable blocks of code?
 - A) Package
 - B) Function
 - C) Procedure
 - o D) All of the above
- 13. What does the "architecture" keyword define in a VHDL model?
 - A) A testbench
 - B) The design's structure or behavior
 - C) Input-output constraints
 - D) A simulation environment
- 14. In VHDL, what is the role of a "sensitivity list"?
 - A) To list the inputs and outputs
 - B) To specify signals that trigger a process
 - C) To declare variables
 - D) To define timing constraints
- 15. Which of the following is used to describe the interconnection of components in VHDL?
 - A) Entity
 - B) Architecture
 - C) Configuration
 - D) Signal

Overflow and Data Representation Using VHDL

- 16. What type of overflow occurs when the result of an arithmetic operation exceeds the range of the data type?
 - A) Sign overflow
 - B) Type overflow
 - C) Arithmetic overflow
 - o D) Boolean overflow

- 17. In a signed number representation in VHDL, what does the most significant bit (MSB) represent?
 - A) The magnitude of the number
 - \circ B) The least significant bit
 - \circ $\,$ C) The sign of the number
 - \circ D) The overflow indicator
- 18. Which VHDL construct is used to detect overflow in arithmetic operations?
 - A) Process
 - B) If-Else statement
 - C) Overflow flag
 - D) Signal assignment

19. Which of the following describes two's complement representation?

- A) It uses a sign bit and magnitude bits
- B) It represents positive and negative numbers
- C) It uses an unsigned representation
- D) It only represents positive numbers

Design of Combinational Logic Using VHDL

- 20. Which VHDL construct is used to model combinational logic?
 - A) Process with sensitivity list
 - B) Loop statement
 - C) Variable declaration
 - D) Architecture declaration
- 21. Which of the following can be used to implement a multiplexer in VHDL?
 - A) IF-ELSE statement
 - B) CASE statement
 - C) WHEN-ELSE statement
 - D) All of the above
- 22. In combinational logic design using VHDL, which construct is often used for priority encoding?
 - Ă) LOOP
 - \circ B) GENERATE
 - \circ C) IF-ELSE
 - D) PROCEDURE
- 23. Which of the following is true about combinational circuits?
 - A) They have memory
 - B) They do not have memory
 - C) They always require feedback
 - D) They cannot be implemented using VHDL
- 24. Which VHDL statement can be used to implement a combinational decoder?
 - A) FOR loop
 - B) CASE statement
 - C) IF-THEN-ELSE statement
 - o D) WAIT statement

25. In a combinational logic circuit, the output depends on:

- A) The present inputs
- B) The previous state of the system
- C) The clock signal
- \circ D) All of the above

26. Which of the following is NOT a combinational logic component?

- A) Full adder
- o B) Multiplexer
- C) D flip-flop
- o D) Decoder
- 27. Which of the following is a combinational circuit that selects one output from many inputs?
 - A) Encoder
 - o B) Decoder
 - C) Multiplexer
 - o D) Demultiplexer

Design of Sequential Logic Using VHDL

28. In VHDL, sequential logic typically uses:

- A) Flip-flops
- B) Multiplexers
- C) Combinational gates
- o D) Encoders
- 29. Which VHDL construct is most commonly used to implement sequential logic?
 - A) Process with a clock signal in the sensitivity list
 - B) Concurrent signal assignment
 - C) Case statement
 - D) Entity declaration

30. A D flip-flop can be described in VHDL using:

- \circ A) A process sensitive to both clock and reset
- B) A simple signal assignment
- C) An entity without architecture
- D) A function call
- 31. Which of the following can be used to implement a finite state machine (FSM) in VHDL?
 - A) Case statements
 - B) Process with clock and reset signals
 - C) State encoding with ENUM types
 - D) All of the above
- 32. Sequential circuits differ from combinational circuits because they:
 - A) Have no memory
 - o B) Are faster
 - C) Depend on both current inputs and previous states
 - D) Require no clock signals

33. A typical sequential VHDL process uses which two primary signals?

- A) Input and output
- B) Clock and reset
- C) Enable and clock
- D) Data and address
- 34. Which VHDL statement is used to implement state transitions in a finite state machine (FSM)?
 - A) FOR loop
 - B) CASE statement
 - C) IF-THEN-ELSE
 - D) WAIT statement

35. In VHDL, how can a counter be implemented?

- A) Using a process triggered by the clock signal
- B) Using a simple signal assignment
- C) Using a FOR-GENERATE loop
- D) Using a function

36. What type of memory element is used in the design of sequential logic?

- A) Flip-flop
- B) AND gate
- C) Multiplexer
- D) Decoder
- 37. In VHDL, a process that describes sequential logic should include:
 - A) A clock signal
 - B) Only combinational logic
 - C) A single assignment statement
 - D) A sensitivity list with only input signals

38. Which of the following is an example of sequential logic?

- A) Full adder
- B) D flip-flop
- C) Multiplexer
- D) Half subtractor

Pipelining Using VHDL

- 39. Pipelining in digital design helps in:
 - A) Reducing latency
 - B) Increasing throughput
 - C) Minimizing power consumption
 - o D) Decreasing the number of clock cycles

40. Which of the following is an essential component of a pipelined design?

- A) Flip-flop
- B) Memory element
- C) Combinational logic
- D) All of the above

41. In a pipelined design, the clock signal typically:

- A) Only controls the input signals
- B) Synchronizes data transfer between pipeline stages
- \circ $\,$ C) Controls the output signals directly
- o D) Is unnecessary
- 42. Which of the following best describes the concept of pipelining?
 - $\circ~$ A) Dividing a task into stages and processing them in parallel
 - B) Reducing clock frequency
 - C) Using fewer resources for the same task
 - D) All of the above
- 43. Which of the following best describes the pipeline register?
 - A) It stores intermediate results between pipeline stages
 - B) It delays the clock signal
 - C) It holds the input data for the pipeline
 - \circ D) It manages the control signals of the pipeline
- 44. In VHDL, pipelining is typically implemented using:
 - A) Multiple clocked processes
 - B) A single combinational process
 - C) An unclocked process
 - D) WAIT statements
- 45. In a pipelined architecture, what is the role of the control unit?
 - A) To manage data flow between pipeline stages
 - B) To synchronize all pipeline stages
 - C) To detect and handle hazards
 - D) All of the above
- 46. Pipelining in VHDL can lead to:
 - A) Increased design complexity
 - B) Reduced latency
 - C) Lower power consumption
 - \circ D) None of the above
- 47. Which of the following is a potential issue in pipelined designs?
 - A) Data hazards
 - B) Pipeline registers
 - C) Control signals
 - D) Reduced clock speed
- 48. Which of the following hazards can occur in a pipelined system?
 - A) Data hazard
 - B) Control hazard
 - C) Structural hazard
 - D) All of the above
- 49. In pipelining, a data hazard occurs when:
 - $\circ~$ A) Data is not available in time for the next pipeline stage
 - B) The pipeline registers fail
 - C) The clock signal is skewed
 - D) The data does not fit in memory
- 50. What is a key advantage of using pipelining in digital designs?

- A) Reduced design complexity
- B) Increased clock speed
- C) Higher throughput
- D) Lower latency

51. In pipelining, the control hazard occurs due to:

- A) Data dependencies
- \circ $\,$ B) Incorrect data forwarding
- C) Branch instructions
- D) Pipeline register failure

52. What technique can be used to resolve control hazards in a pipeline?

- A) Branch prediction
- B) Data forwarding
- C) Pipeline stalling
- D) Hazard detection
- 53. Which of the following is a typical application of pipelining in VHDL?
 - A) Digital filters
 - B) Flip-flop design
 - C) Simple logic gates
 - D) Serial communication protocols
- 54. In a pipelined system, what does a stall refer to?
 - A) Halting the entire system
 - B) Delaying the pipeline until data becomes available
 - C) Reducing the clock frequency
 - D) Increasing the clock frequency
- 55. Which of the following is NOT a solution for resolving pipeline hazards?
 - A) Instruction reordering
 - B) Increasing clock speed
 - C) Pipeline interlocks
 - D) All of the above
 - 0

56. Pipeline registers are placed:

- A) At the beginning of the pipeline
- B) Between each pipeline stage
- C) At the end of the pipeline
- D) Only at the input and output stages
- 57. Which type of pipeline hazard occurs due to resource conflicts?
 - A) Data hazard
 - B) Control hazard
 - C) Structural hazard
 - D) Timing hazard
- 58. How can structural hazards be avoided in a pipeline?
 - A) By duplicating hardware resources
 - B) By using branch prediction
 - C) By increasing clock speed
 - o D) By implementing bypassing techniques
- 59. Which of the following describes instruction-level parallelism (ILP)?

- A) Executing multiple instructions simultaneously in a pipeline
- B) Executing a single instruction in multiple clock cycles
- C) Delaying instruction execution
- $\circ~$ D) Using fewer resources for each instruction

60. A pipeline interlock is used to:

- A) Detect and prevent hazards in a pipeline
- B) Speed up the pipeline stages
- C) Increase the clock frequency
- D) Reduce the number of pipeline stages

61. In VHDL pipelining, stage balancing refers to:

- A) Ensuring each pipeline stage has an equal amount of logic
- B) Doubling the resources of each pipeline stage
- C) Reducing the clock frequency
- \circ D) Increasing pipeline depth
- 62. Which of the following describes the role of the pipeline control unit?
 - A) Managing data dependencies and hazards
 - B) Flushing the pipeline
 - C) Increasing clock speed
 - D) Decreasing power consumption
- 63. Which of the following is a drawback of pipelining?
 - A) Increased throughput
 - B) Increased complexity of control logic
 - $\circ~$ C) Lower power consumption
 - \circ D) Reduced clock frequency