
Computer Organization

and

Embedded System

Hardware descripts language and IC technology

(ACtE0406)
Ishwar Kumar Singh

Computer Engineer

Government of Nepal

- Prepared by Er. Ishwar Kumar Singh

4.6 Hardware descripts language and

IC technology (ACtE0406)
 VHDL Overview,

 Overflow and data representation using VHDL,

 Design of combinational logic using VHDL,

 Design of sequential logic using VHDL,

 Pipelining using VHDL

- Prepared by Er. Ishwar Kumar Singh

VHDL Overview
 VHDL stands for VHSIC Hardware Description Language.

 VHSIC stands for Very High-Speed Integrated Circuit.

 VHDL is a hardware description language used for describing and

simulating digital and hardware systems.

 It provides a means for designing, documenting, and testing digital

circuits such as combinational and sequential logic.

 VHDL is used widely in Application-Specific Integrated Circuits

(ASICs) and Field-Programmable Gate Arrays (FPGAs) design.

- Prepared by Er. Ishwar Kumar Singh

VHDL Overview
Key components of VHDL include:

 Entities The entity describes the interface of a module.

 Architectures: The architecture defines the behaviour of a module.

 Processes: Used to model sequential behaviour and can include

sensitivity lists for event-driven simulation.

 Data Types:

• Scalar Type such as Bit, Boolean, Integer, Character, Real, etc.

• Composite Type such as Array, Record etc.

- Prepared by Er. Ishwar Kumar Singh

VHDL Features
 Concurrency: VHDL is designed to describe hardware systems,

which are inherently concurrent. This means that multiple

processes can execute simultaneously, reflecting the parallel

nature of hardware components.

 Modularity: VHDL supports the design of modular systems

through the use of entities and architectures which allows for

better design abstraction and reuse.

 Strongly Typed Language: VHDL enforces strong typing, meaning

that data types are rigorously checked during compilation. This

helps prevent errors by ensuring that operations are only performed

on compatible types.

- Prepared by Er. Ishwar Kumar Singh

VHDL Features
 Simulatability and Synthesizability: VHDL is both a simulation

language and a synthesis language i.e. it can be used to simulate

the behaviour of the design as well as to generate the hardware

implementation.

 Support for Hierarchical Design: VHDL supports hierarchical

designs, allowing complex systems to be broken down into

smaller, more manageable modules.

 Timing Specification: VHDL allows for precise timing

specifications, making it suitable for designing systems that need

accurate control of time-based operations.

- Prepared by Er. Ishwar Kumar Singh

Overflow and Data Representation

Using VHDL

 Overflow occurs when a result exceeds the maximum value that can be

represented by a given data type.

 In VHDL, handling overflow requires careful attention to data types, especially

when performing arithmetic operations.

 Data Representation: VHDL supports a variety of data representations,

including binary, hexadecimal, and decimal.

 Fixed and Floating Point: VHDL provides packages such as fixed_pkg and

float_pkg for fixed and floating-point arithmetic.

 Handling Overflow: It can be managed using conditional statements (e.g., IF-

THEN) or by setting constraints on the signal ranges.

- Prepared by Er. Ishwar Kumar Singh

Design of Combinational Logic Using VHDL

 Combinational logic is a type of digital logic in which the output is

purely a function of the current inputs.

 VHDL allows the modelling of combinational logic using constructs

such as:

 IF-ELSE Statements: Commonly used for implementing

conditional logic.

CASE Statements: Useful for selecting one output from multiple

inputs, such as in a multiplexer.

WHEN-ELSE: Another method of conditional assignment in

concurrent statements.

- Prepared by Er. Ishwar Kumar Singh

Design of Combinational Logic Using VHDL

Important Considerations for Combinational Logic:

 Sensitivity List:

• All that signals that affect the output needs to be included in

the sensitivity list to avoid latches or unintended sequential

behaviour.

 No Memory Elements:

• Combinational logic should not contain memory elements (e.g.,

no use of flip-flops or registers).

• If memory elements are needed, the logic is sequential, not

combinational.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

 Sequential logic depends not only on the current inputs but also on

past inputs or states.

 VHDL is capable of modelling sequential circuits such as flip-flops,

counters, and finite state machines (FSMs).

• Processes with Clock Signals: Sequential logic is typically

modelled using processes that are sensitive to clock edges.

• Flip-Flops: D, T, and JK flip-flops are commonly described using

processes with clock and reset signals.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

• Finite State Machines (FSMs): FSMs can be implemented using

ENUM (Enumerated) types for state encoding and CASE

statements for transitions between states.

o Using an ENUM type for state encoding means that each

state in the FSM is assigned a unique name, making the

code more readable and maintainable.

• Counters and Shift Registers: Sequential counters and registers

are modelled using clocked processes that update on clock

edges.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

Important Considerations for Sequential Logic:

 Clock and Reset Management: Proper management of clock and

reset signals is crucial in sequential designs to ensure correct

initialization and timing.

 Avoiding Race Conditions: Ensure that all processes sensitive to

a clock edge have consistent timing to avoid race conditions that

could lead to unpredictable behaviour.

 Timing Constraints: Sequential circuits must adhere to timing

constraints such as setup and hold times, which can be enforced

during synthesis.

- Prepared by Er. Ishwar Kumar Singh

Pipelining using VHDL

 Pipelining is a technique which involves breaking a complex

operation into multiple stages, where each stage performs a portion

of the task.

 In VHDL, pipelining is implemented by dividing the logic into stages

and using registers (flip-flops) to store the intermediate results

between stages.

 These registers are triggered by a clock signal, ensuring that each

stage of the pipeline advances on each clock cycle.

- Prepared by Er. Ishwar Kumar Singh

Key Concepts in Pipelining

 Pipeline Stages:

• The operation is divided into several smaller tasks, each of

which is handled in a separate pipeline stage.

• Each stage operates concurrently on different data.

 Registers:

• Flip-flops or registers are placed between the pipeline stages

to hold intermediate results.

• These registers are clocked to synchronize data transfer

between stages.

- Prepared by Er. Ishwar Kumar Singh

Key Concepts in Pipelining

 Latency vs Throughput:

• Pipelining increases the throughput (the number of operations

completed per unit of time) but adds latency (the time taken for

a single piece of data to pass through the entire pipeline).

 Balanced Pipeline:

• For maximum efficiency, the stages should be balanced,

meaning that each stage should take approximately the same

amount of time to complete its task.

• If one stage is slower, it can become a bottleneck for the entire

pipeline.

- Prepared by Er. Ishwar Kumar Singh

Thank You.

