
Computer Organization

and

Embedded System

Hardware descripts language and IC technology

(ACtE0406)
Ishwar Kumar Singh

Computer Engineer

Government of Nepal

- Prepared by Er. Ishwar Kumar Singh

4.6 Hardware descripts language and

IC technology (ACtE0406)
 VHDL Overview,

 Overflow and data representation using VHDL,

 Design of combinational logic using VHDL,

 Design of sequential logic using VHDL,

 Pipelining using VHDL

- Prepared by Er. Ishwar Kumar Singh

VHDL Overview
 VHDL stands for VHSIC Hardware Description Language.

 VHSIC stands for Very High-Speed Integrated Circuit.

 VHDL is a hardware description language used for describing and

simulating digital and hardware systems.

 It provides a means for designing, documenting, and testing digital

circuits such as combinational and sequential logic.

 VHDL is used widely in Application-Specific Integrated Circuits

(ASICs) and Field-Programmable Gate Arrays (FPGAs) design.

- Prepared by Er. Ishwar Kumar Singh

VHDL Overview
Key components of VHDL include:

 Entities The entity describes the interface of a module.

 Architectures: The architecture defines the behaviour of a module.

 Processes: Used to model sequential behaviour and can include

sensitivity lists for event-driven simulation.

 Data Types:

• Scalar Type such as Bit, Boolean, Integer, Character, Real, etc.

• Composite Type such as Array, Record etc.

- Prepared by Er. Ishwar Kumar Singh

VHDL Features
 Concurrency: VHDL is designed to describe hardware systems,

which are inherently concurrent. This means that multiple

processes can execute simultaneously, reflecting the parallel

nature of hardware components.

 Modularity: VHDL supports the design of modular systems

through the use of entities and architectures which allows for

better design abstraction and reuse.

 Strongly Typed Language: VHDL enforces strong typing, meaning

that data types are rigorously checked during compilation. This

helps prevent errors by ensuring that operations are only performed

on compatible types.

- Prepared by Er. Ishwar Kumar Singh

VHDL Features
 Simulatability and Synthesizability: VHDL is both a simulation

language and a synthesis language i.e. it can be used to simulate

the behaviour of the design as well as to generate the hardware

implementation.

 Support for Hierarchical Design: VHDL supports hierarchical

designs, allowing complex systems to be broken down into

smaller, more manageable modules.

 Timing Specification: VHDL allows for precise timing

specifications, making it suitable for designing systems that need

accurate control of time-based operations.

- Prepared by Er. Ishwar Kumar Singh

Overflow and Data Representation

Using VHDL

 Overflow occurs when a result exceeds the maximum value that can be

represented by a given data type.

 In VHDL, handling overflow requires careful attention to data types, especially

when performing arithmetic operations.

 Data Representation: VHDL supports a variety of data representations,

including binary, hexadecimal, and decimal.

 Fixed and Floating Point: VHDL provides packages such as fixed_pkg and

float_pkg for fixed and floating-point arithmetic.

 Handling Overflow: It can be managed using conditional statements (e.g., IF-

THEN) or by setting constraints on the signal ranges.

- Prepared by Er. Ishwar Kumar Singh

Design of Combinational Logic Using VHDL

 Combinational logic is a type of digital logic in which the output is

purely a function of the current inputs.

 VHDL allows the modelling of combinational logic using constructs

such as:

 IF-ELSE Statements: Commonly used for implementing

conditional logic.

CASE Statements: Useful for selecting one output from multiple

inputs, such as in a multiplexer.

WHEN-ELSE: Another method of conditional assignment in

concurrent statements.

- Prepared by Er. Ishwar Kumar Singh

Design of Combinational Logic Using VHDL

Important Considerations for Combinational Logic:

 Sensitivity List:

• All that signals that affect the output needs to be included in

the sensitivity list to avoid latches or unintended sequential

behaviour.

 No Memory Elements:

• Combinational logic should not contain memory elements (e.g.,

no use of flip-flops or registers).

• If memory elements are needed, the logic is sequential, not

combinational.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

 Sequential logic depends not only on the current inputs but also on

past inputs or states.

 VHDL is capable of modelling sequential circuits such as flip-flops,

counters, and finite state machines (FSMs).

• Processes with Clock Signals: Sequential logic is typically

modelled using processes that are sensitive to clock edges.

• Flip-Flops: D, T, and JK flip-flops are commonly described using

processes with clock and reset signals.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

• Finite State Machines (FSMs): FSMs can be implemented using

ENUM (Enumerated) types for state encoding and CASE

statements for transitions between states.

o Using an ENUM type for state encoding means that each

state in the FSM is assigned a unique name, making the

code more readable and maintainable.

• Counters and Shift Registers: Sequential counters and registers

are modelled using clocked processes that update on clock

edges.

- Prepared by Er. Ishwar Kumar Singh

Design of Sequential Logic Using VHDL

Important Considerations for Sequential Logic:

 Clock and Reset Management: Proper management of clock and

reset signals is crucial in sequential designs to ensure correct

initialization and timing.

 Avoiding Race Conditions: Ensure that all processes sensitive to

a clock edge have consistent timing to avoid race conditions that

could lead to unpredictable behaviour.

 Timing Constraints: Sequential circuits must adhere to timing

constraints such as setup and hold times, which can be enforced

during synthesis.

- Prepared by Er. Ishwar Kumar Singh

Pipelining using VHDL

 Pipelining is a technique which involves breaking a complex

operation into multiple stages, where each stage performs a portion

of the task.

 In VHDL, pipelining is implemented by dividing the logic into stages

and using registers (flip-flops) to store the intermediate results

between stages.

 These registers are triggered by a clock signal, ensuring that each

stage of the pipeline advances on each clock cycle.

- Prepared by Er. Ishwar Kumar Singh

Key Concepts in Pipelining

 Pipeline Stages:

• The operation is divided into several smaller tasks, each of

which is handled in a separate pipeline stage.

• Each stage operates concurrently on different data.

 Registers:

• Flip-flops or registers are placed between the pipeline stages

to hold intermediate results.

• These registers are clocked to synchronize data transfer

between stages.

- Prepared by Er. Ishwar Kumar Singh

Key Concepts in Pipelining

 Latency vs Throughput:

• Pipelining increases the throughput (the number of operations

completed per unit of time) but adds latency (the time taken for

a single piece of data to pass through the entire pipeline).

 Balanced Pipeline:

• For maximum efficiency, the stages should be balanced,

meaning that each stage should take approximately the same

amount of time to complete its task.

• If one stage is slower, it can become a bottleneck for the entire

pipeline.

- Prepared by Er. Ishwar Kumar Singh

Thank You.

