
Computer Organization

and

Embedded System

4.5. Real-Time operating and

Control System (ACtE0405)

Ishwar Kumar Singh

Computer Engineer

Government of Nepal

- Prepared by Er. Ishwar Kumar Singh

4.5. Real-Time operating (ACtE0404)

 Operating System Basics,

 Task, Process, and Threads,

 Task Scheduling,

 Task Synchronization,

- Prepared by Er. Ishwar Kumar Singh

Operating System

 The operating system is a system program

that serves as an interface between the

computing system and the end-user.

 Operating systems create an environment

where the user can run any programs or

communicate with software or applications in

a comfortable and well-organized way.

 Operating is a software program that

manages and controls the execution of

application programs, software resources and

computer hardware.

- Prepared by Er. Ishwar Kumar Singh

Functions of OS

 Security:–

 The operating system uses password protection to protect user

data and similar other techniques.

 It also prevents unauthorized access to programs and user data.

 Control over system performance :–

 Monitors overall system health to help improve performance.

 records the response time between service requests and system

response to having a complete view of the system health.

 This can help improve performance by providing important

information needed to troubleshoot problems.

- Prepared by Er. Ishwar Kumar Singh

Functions of OS

Memory Management :-

 The operating system manages the Primary Memory or Main

Memory, which is fast storage and can be accessed directly by the

CPU.

 An Operating System performs the following activities for memory

management:

 It keeps track of primary memory, i.e. which bytes of memory are

used by which user program.

 It allocates the memory to a process when the process requests

and deallocates the memory when the process terminates or is

performing an I/O operation.

- Prepared by Er. Ishwar Kumar Singh

Functions of OS

Process Management :-

 In a multi-programming environment, the OS decides the order in

which processes have access to the processor and how much

processing time each process has.

 This function of OS is called process scheduling.

 An Operating System performs the following activities for processor

management.

 Keeps track of the status of processes.

 Allocates the processor to a process and De-allocates processor

when a process is no more required.

- Prepared by Er. Ishwar Kumar Singh

Functions of OS

Device Management :-

 An OS manages device communication via their respective drivers.

 It performs the following activities for device management.

 Keeps track of all devices connected to the system.

 Decides which process gets access to a certain device and for

how long.

 Allocates devices in an effective and efficient way.

 Deallocates devices when they are no longer required.

- Prepared by Er. Ishwar Kumar Singh

Functions of OS

File Management :-

 A file system is organized into directories for efficient or easy

navigation and usage.

 These directories may contain other directories and other files.

 An Operating System carries out the following file management

activities.

 It keeps track of where information is stored.

 It maintain and stores user access settings and status of every

files.

- Prepared by Er. Ishwar Kumar Singh

Tasks, Processes and Threads

Task:

 In computing, a "task" is a unit of work that the operating system

needs to perform.

 A task can be anything from running an application to handling a

system operation.

 Tasks can be broken down into processes and threads.

- Prepared by Er. Ishwar Kumar Singh

Tasks, Processes and Threads

Process:

 A process is an instance of a program in execution.

 It contains the program code, its current activity, a program counter,

registers and variables.

 The operating system creates and manages processes and assigns

resources to them.

 Processes are independent of each other and are isolated in

memory i.e. one process cannot directly access the memory of

another.

- Prepared by Er. Ishwar Kumar Singh

Tasks, Processes and Threads

Key attributes of a process:

 Process ID (PID): A unique identifier for each process.

 Memory: Allocated to the process, including program code and

data.

 Execution Context: The current state of the process, including

registers and program counters.

- Prepared by Er. Ishwar Kumar Singh

Process State
 As a process executes, it changes state.

 The state of a process is defined part by the current activity of that process.

 Each process may be in one of the following states:

• New: The process is being created.

• Running: Instructions are being executed.

• Waiting: The process is waiting for some event to occur (such as an I/0

completion or reception of a signal).

• Ready: The process is waiting to be assigned to a processor.

• Terminated: The process has finished execution.

 Many processes may be in ready and waiting state at the same time.

 But only one process can be running on any processor at any instant

- Prepared by Er. Ishwar Kumar Singh

Process State

- Prepared by Er. Ishwar Kumar Singh

Tasks, Processes and Threads

Thread:

 A thread is a smaller unit of a process.

 While a process may have multiple threads, all threads share the

same memory space.

 Threads represent a sequence of instructions within a process.

 Threads within the same process can run concurrently, sharing

resources like memory, which allows for efficient multitasking.

 Threads are more lightweight than processes.

- Prepared by Er. Ishwar Kumar Singh

Tasks, Processes and Threads

Types of threads:

 User Threads: Managed by a user-level library, not directly by the

OS.

 Kernel Threads: Managed directly by the OS kernel.

- Prepared by Er. Ishwar Kumar Singh

Task Scheduling

 Task Scheduling is the method by which an OS decides which task

(process or thread) should be executed by the CPU at any given

time.

 The goal of scheduling is to ensure that all tasks are executed

efficiently, fairly, and with minimal delay.

 The scheduler in the OS decides the order of task execution based

on the scheduling algorithm.

Types:

 Non-Preemptive Scheduling

 Preemptive Scheduling

- Prepared by Er. Ishwar Kumar Singh

Task Scheduling
Non-Preemptive Scheduling:

 The process voluntarily yield control of the CPU.

 Once the CPU has been allocated to a process, the process keeps the

CPU until it releases the CPU either by terminating or by switching to the

waiting state.

 The operating system does not interrupt or preempt running process.

Instead, it waits till the process completes its CPU burst time, and then

after that it can allocate the CPU to any other process.

 Some Algorithms based on non-preemptive scheduling are: Shortest Job

First (SJF basically non-preemptive) Scheduling and Priority (non-

preemptive version) Scheduling, etc..

- Prepared by Er. Ishwar Kumar Singh

Task Scheduling
Preemptive Scheduling

 The operating system controls the CPU allocation to process.

 It decides when a process should be paused and another process

should be given CPU time.

 The OS "preempts" or interrupts a running process to switch to

another, ensuring that all process get a fair share of CPU

resources.

 Some Algorithms that are based on preemptive scheduling are

Round Robin Scheduling (RR), Shortest Remaining Time First

(SRTF), Priority (preemptive version) Scheduling, etc.

- Prepared by Er. Ishwar Kumar Singh

Scheduling Algorithm
 There are mainly five types of process scheduling algorithms, which

can be either non-preemptive or preemptive

• First Come First Serve (FCFS)

• Shortest Job First (SJF) Scheduling

• Shortest Remaining Time (SRT) Scheduling

• Priority Scheduling

• Round Robin Scheduling

- Prepared by Er. Ishwar Kumar Singh

First Come First Serve
 First Come First Serve (FCFS) is the easiest and most simple CPU

scheduling algorithm.

 In this type of algorithm, the process which requests the CPU gets the

CPU allocation first. This scheduling method can be managed with a

FIFO queue.

 As the process enters the ready queue, its PCB (Process Control

Block) is linked with the tail of the queue.

 So, when CPU becomes free, it should be assigned to the process at

the beginning of the queue.

 It is easy to implement and use.

 However, this method is poor in performance, and the general wait

time is quite high.

- Prepared by Er. Ishwar Kumar Singh

Shortest Job First
 Shortest Job First (SJF) is a scheduling algorithm in which the

process with the shortest execution time should be selected for

execution next.

 This scheduling method can be preemptive or non-preemptive.

 It significantly reduces the average waiting time for other processes

awaiting execution.

 It is associated with each job as a unit of time to complete.

 This algorithm method is useful for batch-type processing, where

waiting for jobs to complete is not critical.

 It improves job output by offering shorter jobs, which should be

executed first, which mostly have a shorter turnaround time.

- Prepared by Er. Ishwar Kumar Singh

Shortest Remaining Time
 Shortest Remaining Time (SRT) is also known as SJF preemptive

scheduling.

 In this method, the process will be allocated to the task, which is

closest to its completion.

 This method prevents a newer ready state process from holding the

completion of an older process.

 This method is mostly applied in batch environments where short

jobs are required to be given preference.

 This is not an ideal method to implement it in a shared system

where the required CPU time is unknown.

- Prepared by Er. Ishwar Kumar Singh

Priority Based Scheduling
 Priority scheduling is a method of scheduling processes based on

priority.

 In this method, the scheduler selects the tasks to work as per the

priority.

 Priority scheduling also helps OS to involve priority assignments.

 The processes with higher priority should be carried out first,

whereas jobs with equal priorities are carried out on a round-robin

or FCFS basis.

 Priority can be decided based on memory requirements, time

requirements, etc.

- Prepared by Er. Ishwar Kumar Singh

Round-Robin Scheduling
 Round Robin is the preemptive process scheduling algorithm where,

the OS defines a time quantum (slice).

 All the processes will get executed in the cyclic way.

 Each of the process will get the CPU for a small amount of time

(called time quantum) and then get back to the ready queue to wait

for its next turn.

 Once a process is executed for a given time period, it is preempted

and other process executes for a given time period.

 Context switching is used to save states of preempted processes.

 Time slice should be minimum, which is assigned for a specific task

to be processed. However, it may vary for different processes.

- Prepared by Er. Ishwar Kumar Singh

Task Synchronization
 Task Synchronization refers to coordinating the execution of tasks

(processes or threads) in a way that ensures correct results,

especially when multiple tasks share resources.

 Without proper synchronization, tasks might interfere with each

other, leading to inconsistent results or deadlock (where tasks

cannot proceed).

Key concepts in task synchronization include:

 Mutual Exclusion: Ensures that only one task can access a

shared resource at a time (e.g., using locks, semaphores).

 Deadlock: A situation where two or more tasks are waiting for

each other to release resources, leading to a standstill.

- Prepared by Er. Ishwar Kumar Singh

Task Synchronization
 Race Condition: Occurs when multiple tasks try to access and

modify shared resources simultaneously, leading to unpredictable

outcomes.

 Semaphores: A synchronization tool that helps control access to

shared resources.

 Mutex (Mutual Exclusion): A mechanism to enforce mutual

exclusion by locking shared resources during access.

 Task synchronization is critical in multi-threaded and multi-process

environments to prevent data corruption and ensure the system

operates smoothly.

- Prepared by Er. Ishwar Kumar Singh

Program vs Process

Features Process Program

Definition A program has a collection of

instructions designed to

accomplish a certain task.

A process is an example of

an execution program.

Nature It is an active entity. It is a passive entity.

Lifespan It has a limited lifespan. It has a much higher

lifespan.

Creation The new process needs

duplication of the parent

process.

No much duplication is

needed.

- Prepared by Er. Ishwar Kumar Singh

Program vs Process

Features Process Program

Resources It has a high resources

requirement, and it

requires including CPU,

memory address, disk,

Input/output during its

lifetime.

It doesn't have any

resources requirements; it

only needs memory space

to store the instructions.

Required

Process

It holds resources

including CPU, disk,

memory address,

Input/Output etc.

The program is stored on a

disk in a file and doesn't

need any additional

resources.

- Prepared by Er. Ishwar Kumar Singh

Program vs Process

Features Process Program

Computation

Time

The process takes a long time

to access and compute a

single fact.

It has no computation

time and cost.

Overhead It has considerable overhead. It has no significant

overhead cost.

Cache Data It may use the cache to store

the retrieve the data as it uses

OS paging scheme and cache

replacement policy

It has the instruction to

use cache for its data.

- Prepared by Er. Ishwar Kumar Singh

Thread vs Process

S.N. Process Thread

1
Process is heavy weight or

resource intensive.

Thread is light weight, taking

lesser resources than a process.

2

Process switching needs

interaction with operating

system.

Thread switching does not need to

interact with operating system.

3

In multiple processing

environments, each process

executes the same code but

has its own memory and file

resources.

All threads can share same set of

open files, child processes.

- Prepared by Er. Ishwar Kumar Singh

Thread vs Process

S.N. Process Thread

4

If one process is blocked, then

no other process can execute

until the first process is

unblocked.

While one thread is blocked and

waiting, a second thread in the

same task can run.

5

Multiple processes without

using threads use more

resources.

Multiple threaded processes use

fewer resources.

6

In multiple processes each

process operates

independently of the others.

One thread can read, write or

change another thread's data.

- Prepared by Er. Ishwar Kumar Singh

User Level Threads vs Kernel Level Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to

create and manage.

Kernel-level threads are slower to

create and manage.

2 Implementation is by a thread

library at the user level.

Operating system supports

creation of Kernel threads.

3 User-level thread is generic

and can run on any operating

system.

Kernel-level thread is specific to

the operating system.

4 Multi-threaded applications

cannot take advantage of

multiprocessing.

Kernel routines themselves can

be multithreaded.

- Prepared by Er. Ishwar Kumar Singh

Thank You.

