
Computer Organization

and

Embedded System

Computer Arithmetic and Memory System

(ACtE0402)

Ishwar Kumar Singh

Computer Engineer

Government of Nepal

- Prepared by Er. Ishwar Kumar Singh

4.2 Computer Arithmetic and

Memory System (ACtE0402):

 Arithmetic and Logical

operation,

 The Memory Hierarchy,

Internal and External

memory,

 Memory Write Ability,

 Storage Permanence,

 Composing Memory

 Cache memory principles,

 Elements of Cache design –

• Cache size,

• Mapping function,

• Replacement algorithm,

• Write policy,

• Number of caches,

- Prepared by Er. Ishwar Kumar Singh

Cache Memory
 CPU logic is usually faster than main memory access time, with the

result that processing speed is limited primarily by the speed of

main memory

 A special very-high-speed memory called cache memory is used to

increase the speed of processing by making current programs and

data available to the CPU at a rapid rate

 The cache is used for storing segments of programs currently being

executed in the CPU and temporary data frequently needed in the

present calculations

 Cache Memory is placed in between the CPU and the main

memory.

- Prepared by Er. Ishwar Kumar Singh

Cache Memory
 When the processor attempts to read a word of memory,

 Cache is checked first for all memory references.

 If found, the word is delivered from cache to the processor

 If not found, the entire block in which that reference resides in main

memory is stored in a cache slot (called as a line) and then the word is

delivered to the processor.

 Each line includes a tag (usually a portion of the main memory address) which

identifies which particular block is being stored.

 Locality of reference implies that future references will likely come from this

block of memory, so that cache line will probably be utilized repeatedly.

 The proportion of memory references, which are found already stored in cache,

is called the hit ratio.

- Prepared by Er. Ishwar Kumar Singh

Cache Design

The basic design elements that serve to classify and differentiate

cache architectures are as follows:

• Cache Size

• Mapping Function

• Replacement Algorithm

• Write Policy

• Number of Caches.

- Prepared by Er. Ishwar Kumar Singh

Cache Size
 The size of the cache should be small enough so that the overall

average cost per bit is close to that of main memory alone

 And the size of the cache should be large enough so that the

overall average access time is close to that of the cache alone.

 The larger the cache, the larger the number of gates involved in

addressing the cache. The result is that large caches tend to be

slightly slower than small ones .

 The available chip and board area also limits cache size.

 Since the performance of the cache is very sensitive to the nature of

the workload, it is impossible to arrive at a single optimum cache

size.

- Prepared by Er. Ishwar Kumar Singh

Replacement Algorithm

 Once the cache has been filled, when a new block is brought into

the cache, one of the existing blocks must be replaced.

 For Direct mapping: There is only one possible line for any

particular block due to which no choice is possible.

 For Associative and Set-Associative Mapping: A replacement

algorithm is needed which must be implemented in hardware to

achieve high speed.

 First-In-First-Out (FIFO): Replace that block in the set that

has been in the cache longest.

• Implemented as a round-robin or circular buffer

technique.

- Prepared by Er. Ishwar Kumar Singh

Replacement Algorithm

 Least Frequently Used (LFU): Replace that block in the set that

has experienced the fewest references.

 Least Recently Used (LRU): Replace that block in the set that has

been in the cache longest with no reference to it.

 Random: Replace a random block in the set.

- Prepared by Er. Ishwar Kumar Singh

Write Policy
 When a line is to be replaced, the original copy of the line in main

memory must be updated if any addressable unit in the line has

been changed.

 If a block has been altered in cache, it is necessary to write it back

out to main memory before replacing it with another block.

 Must not overwrite a cache block unless main memory is up-to date.

 The two major write Polices are:

 Write Through

 Write Back

- Prepared by Er. Ishwar Kumar Singh

Write Policy
 There are two problems to contend with the write polices:

• More than one device may have access to main memory. For

example, an I/O module may be able to read-write directly to

memory. If a word has been altered only in the cache, then the

corresponding memory word is invalid. Further, if the I/O device

has altered main memory, then the cache word is invalid.

• A more complex problem occurs when multiple processors are

attached to the same bus and each processor has its own local

cache. Then, if a word is altered in one cache, it could

conceivably in-validate a word in other caches.

- Prepared by Er. Ishwar Kumar Singh

Write Through
 Using this technique, all write operations are made to main memory

as well as to the cache, ensuring that main memory is always valid.

 Any other processor–cache module can monitor traffic to main

memory to maintain consistency within its own cache.

 The main disadvantage of this technique is that it generates

substantial memory traffic and may create a bottleneck.

- Prepared by Er. Ishwar Kumar Singh

Write Back
 Using this technique, updates are made only in the cache.

 When a block is replaced, it is written back to main memory if and

only if the dirty bit is set.

 The problem with write back is that portions of main memory are

invalid, and hence accesses by I/O modules can be allowed only

through the cache.

 This makes for complex circuitry and a potential bottleneck.

 Multiple caches still can become invalidated, unless some cache

coherency system is used.

- Prepared by Er. Ishwar Kumar Singh

Write Back
Cache Coherency Systems include:

 Bus Watching with Write Through: Other caches monitor memory

writes using write through and invalidates their own cache line if

found the occurrence of memory write operation.

 Hardware Transparency: Additional hardware is used to ensure

that all updates to main memory via cache are reflected in all

caches.

 Non-Cacheable Memory: Only a portion of main memory is shared

by more than one processor and it is known as non-cacheable

• In such a system, the shared memory is never copied into the

cache.

- Prepared by Er. Ishwar Kumar Singh

Number of Cache
 When caches were originally introduced, the typical system had a

single cache.

 More recently, the use of multiple caches has become an important

aspect. There are two design issues surrounding number of caches.

 MULTILEVEL CACHES:

• Most contemporary designs include both on-chip and external

caches.

• The simplest such organization is known as a two-level cache,

with the internal cache designated as Level 1 (L1) and the

external cache designated as Level 2 (L2).

• This helps in reducing main memory accesses.

- Prepared by Er. Ishwar Kumar Singh

Number of Cache
 UNIFIED VERSUS SPLIT CACHES:

• Earlier on-chip cache designs consisted of a single cache,

used to store references to both data and instructions, which

was considered as the unified approach.

• More recently, it has become common to split the cache into

two: one dedicated to instructions and one dedicated to data.

• These two caches both exist at the same level. This is the split

cache.

- Prepared by Er. Ishwar Kumar Singh

Mapping Function
 An algorithm is needed for mapping main memory blocks into cache

lines.

 A means is needed for determining which main memory block

currently occupies a cache line.

 The choice of the mapping function dictates how the cache is

organized.

 There are three techniques which can be used for mapping

• Direct Mapping

• Associative Mapping

• Set-Associative Mapping

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping
 Direct Mapping is the simplest technique which maps each block of

main memory into only one possible cache line.

 The mapping is expressed as, i = j modulo m ;

 where, i = cache line number

j = main memory block number

m = number of lines in the cache

 The mapping function is easily implemented using the main memory

address.

 Example: The CPU address of 15 bits is divided into two fields: the

nine least significant bits constitute the index field and remaining six

bits form the tag field.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

 The main memory needs an address that includes both the tag and

the index bits.

 The number of bits in the index field is equal to the number of

address bits required to access the cache memory line.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping
 The direct mapping cache organization uses the n- bit address to access the

main memory and the k-bit index to access the cache.

 Each word in cache consists of the data word and associated tag. When a new

word is first brought into the cache, the tag bits are stored alongside the data

bits.

 When the CPU generates a memory request, the index field is used for the

address to access the cache.

 The tag field of the CPU address is compared with the tag in the word read

from the cache.

 If the two tags match, there is a hit and the desired data word is in cache.

 If there is no match, there is a miss and the required word is read from main

memory.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

 Advantages: Simple and Inexpensive to Implement.

 Disadvantage:

• Since there is a fixed cache location for any given block.

• Thus, if a program happens to reference words repeatedly from

two different blocks that map into the same line,

• then the blocks will be continually swapped in the cache, and the

hit ratio will be low (a phenomenon known as thrashing).

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping
 It overcomes the disadvantage of direct mapping by permitting

each main memory block to be loaded into any line of the cache.

 In this case, the cache control logic interprets a memory address

simply as a Tag and a Word field.

 The Tag field uniquely identifies a block of main memory.

i.e. The associative memory stores both address and content(data)

of the memory word.

 To determine whether a block is in the cache, the cache control

logic must simultaneously examine every line’s tag for a match.

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping
 A CPU address of 15-bits is

placed in the argument

register and the associative

memory is searched for a

matching address.

 If address is found, the

corresponding 12-bit data is

read and sent to the CPU.

 If no match occurs, the

main memory is accessed

for the word.

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping

 Advantages:

• Flexibility to replace block when a new block is read into the

cache.

• Replacement Algorithm can be used to maximize the hit

ratio.

 Disadvantage: Complex Circuitry is required to examine the tags of

all cache lines in parallel.

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping
 In this method, blocks of cache are grouped into sets, and the

mapping allows a block of main memory to reside in any block of a

specific set.

 From the flexibility point of view, it is in between to the other two

methods.

 In this case, the cache is divided into ‘v’ sets, each of which consists

of ‘k’ lines.

 The relationships are m = v * k & i = j modulo v where,

m = number of lines in the cache, v = number of sets,

k = number of lines in each set

i = cache set number, j = main memory block number,

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping
 When the CPU generates a memory request,

• the index values of the address is used to access the cache

• the tag field of the CPU address is then compared with both tags

in the cache

• the comparison logic is defined by an associative search of the

tags in the set.

- Prepared by Er. Ishwar Kumar Singh

Thank You.

