
Computer Organization

and

Embedded System

Computer Arithmetic and Memory System

(ACtE0402)

Ishwar Kumar Singh

Computer Engineer

Government of Nepal

- Prepared by Er. Ishwar Kumar Singh

4.2 Computer Arithmetic and

Memory System (ACtE0402):

 Arithmetic and Logical

operation,

 The Memory Hierarchy,

Internal and External

memory,

 Memory Write Ability,

 Storage Permanence,

 Composing Memory

 Cache memory principles,

 Elements of Cache design –

• Cache size,

• Mapping function,

• Replacement algorithm,

• Write policy,

• Number of caches,

- Prepared by Er. Ishwar Kumar Singh

Cache Memory
 CPU logic is usually faster than main memory access time, with the

result that processing speed is limited primarily by the speed of

main memory

 A special very-high-speed memory called cache memory is used to

increase the speed of processing by making current programs and

data available to the CPU at a rapid rate

 The cache is used for storing segments of programs currently being

executed in the CPU and temporary data frequently needed in the

present calculations

 Cache Memory is placed in between the CPU and the main

memory.

- Prepared by Er. Ishwar Kumar Singh

Cache Memory
 When the processor attempts to read a word of memory,

 Cache is checked first for all memory references.

 If found, the word is delivered from cache to the processor

 If not found, the entire block in which that reference resides in main

memory is stored in a cache slot (called as a line) and then the word is

delivered to the processor.

 Each line includes a tag (usually a portion of the main memory address) which

identifies which particular block is being stored.

 Locality of reference implies that future references will likely come from this

block of memory, so that cache line will probably be utilized repeatedly.

 The proportion of memory references, which are found already stored in cache,

is called the hit ratio.

- Prepared by Er. Ishwar Kumar Singh

Cache Design

The basic design elements that serve to classify and differentiate

cache architectures are as follows:

• Cache Size

• Mapping Function

• Replacement Algorithm

• Write Policy

• Number of Caches.

- Prepared by Er. Ishwar Kumar Singh

Cache Size
 The size of the cache should be small enough so that the overall

average cost per bit is close to that of main memory alone

 And the size of the cache should be large enough so that the

overall average access time is close to that of the cache alone.

 The larger the cache, the larger the number of gates involved in

addressing the cache. The result is that large caches tend to be

slightly slower than small ones .

 The available chip and board area also limits cache size.

 Since the performance of the cache is very sensitive to the nature of

the workload, it is impossible to arrive at a single optimum cache

size.

- Prepared by Er. Ishwar Kumar Singh

Replacement Algorithm

 Once the cache has been filled, when a new block is brought into

the cache, one of the existing blocks must be replaced.

 For Direct mapping: There is only one possible line for any

particular block due to which no choice is possible.

 For Associative and Set-Associative Mapping: A replacement

algorithm is needed which must be implemented in hardware to

achieve high speed.

 First-In-First-Out (FIFO): Replace that block in the set that

has been in the cache longest.

• Implemented as a round-robin or circular buffer

technique.

- Prepared by Er. Ishwar Kumar Singh

Replacement Algorithm

 Least Frequently Used (LFU): Replace that block in the set that

has experienced the fewest references.

 Least Recently Used (LRU): Replace that block in the set that has

been in the cache longest with no reference to it.

 Random: Replace a random block in the set.

- Prepared by Er. Ishwar Kumar Singh

Write Policy
 When a line is to be replaced, the original copy of the line in main

memory must be updated if any addressable unit in the line has

been changed.

 If a block has been altered in cache, it is necessary to write it back

out to main memory before replacing it with another block.

 Must not overwrite a cache block unless main memory is up-to date.

 The two major write Polices are:

 Write Through

 Write Back

- Prepared by Er. Ishwar Kumar Singh

Write Policy
 There are two problems to contend with the write polices:

• More than one device may have access to main memory. For

example, an I/O module may be able to read-write directly to

memory. If a word has been altered only in the cache, then the

corresponding memory word is invalid. Further, if the I/O device

has altered main memory, then the cache word is invalid.

• A more complex problem occurs when multiple processors are

attached to the same bus and each processor has its own local

cache. Then, if a word is altered in one cache, it could

conceivably in-validate a word in other caches.

- Prepared by Er. Ishwar Kumar Singh

Write Through
 Using this technique, all write operations are made to main memory

as well as to the cache, ensuring that main memory is always valid.

 Any other processor–cache module can monitor traffic to main

memory to maintain consistency within its own cache.

 The main disadvantage of this technique is that it generates

substantial memory traffic and may create a bottleneck.

- Prepared by Er. Ishwar Kumar Singh

Write Back
 Using this technique, updates are made only in the cache.

 When a block is replaced, it is written back to main memory if and

only if the dirty bit is set.

 The problem with write back is that portions of main memory are

invalid, and hence accesses by I/O modules can be allowed only

through the cache.

 This makes for complex circuitry and a potential bottleneck.

 Multiple caches still can become invalidated, unless some cache

coherency system is used.

- Prepared by Er. Ishwar Kumar Singh

Write Back
Cache Coherency Systems include:

 Bus Watching with Write Through: Other caches monitor memory

writes using write through and invalidates their own cache line if

found the occurrence of memory write operation.

 Hardware Transparency: Additional hardware is used to ensure

that all updates to main memory via cache are reflected in all

caches.

 Non-Cacheable Memory: Only a portion of main memory is shared

by more than one processor and it is known as non-cacheable

• In such a system, the shared memory is never copied into the

cache.

- Prepared by Er. Ishwar Kumar Singh

Number of Cache
 When caches were originally introduced, the typical system had a

single cache.

 More recently, the use of multiple caches has become an important

aspect. There are two design issues surrounding number of caches.

 MULTILEVEL CACHES:

• Most contemporary designs include both on-chip and external

caches.

• The simplest such organization is known as a two-level cache,

with the internal cache designated as Level 1 (L1) and the

external cache designated as Level 2 (L2).

• This helps in reducing main memory accesses.

- Prepared by Er. Ishwar Kumar Singh

Number of Cache
 UNIFIED VERSUS SPLIT CACHES:

• Earlier on-chip cache designs consisted of a single cache,

used to store references to both data and instructions, which

was considered as the unified approach.

• More recently, it has become common to split the cache into

two: one dedicated to instructions and one dedicated to data.

• These two caches both exist at the same level. This is the split

cache.

- Prepared by Er. Ishwar Kumar Singh

Mapping Function
 An algorithm is needed for mapping main memory blocks into cache

lines.

 A means is needed for determining which main memory block

currently occupies a cache line.

 The choice of the mapping function dictates how the cache is

organized.

 There are three techniques which can be used for mapping

• Direct Mapping

• Associative Mapping

• Set-Associative Mapping

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping
 Direct Mapping is the simplest technique which maps each block of

main memory into only one possible cache line.

 The mapping is expressed as, i = j modulo m ;

 where, i = cache line number

j = main memory block number

m = number of lines in the cache

 The mapping function is easily implemented using the main memory

address.

 Example: The CPU address of 15 bits is divided into two fields: the

nine least significant bits constitute the index field and remaining six

bits form the tag field.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

 The main memory needs an address that includes both the tag and

the index bits.

 The number of bits in the index field is equal to the number of

address bits required to access the cache memory line.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping
 The direct mapping cache organization uses the n- bit address to access the

main memory and the k-bit index to access the cache.

 Each word in cache consists of the data word and associated tag. When a new

word is first brought into the cache, the tag bits are stored alongside the data

bits.

 When the CPU generates a memory request, the index field is used for the

address to access the cache.

 The tag field of the CPU address is compared with the tag in the word read

from the cache.

 If the two tags match, there is a hit and the desired data word is in cache.

 If there is no match, there is a miss and the required word is read from main

memory.

- Prepared by Er. Ishwar Kumar Singh

Direct Mapping

 Advantages: Simple and Inexpensive to Implement.

 Disadvantage:

• Since there is a fixed cache location for any given block.

• Thus, if a program happens to reference words repeatedly from

two different blocks that map into the same line,

• then the blocks will be continually swapped in the cache, and the

hit ratio will be low (a phenomenon known as thrashing).

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping
 It overcomes the disadvantage of direct mapping by permitting

each main memory block to be loaded into any line of the cache.

 In this case, the cache control logic interprets a memory address

simply as a Tag and a Word field.

 The Tag field uniquely identifies a block of main memory.

i.e. The associative memory stores both address and content(data)

of the memory word.

 To determine whether a block is in the cache, the cache control

logic must simultaneously examine every line’s tag for a match.

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping
 A CPU address of 15-bits is

placed in the argument

register and the associative

memory is searched for a

matching address.

 If address is found, the

corresponding 12-bit data is

read and sent to the CPU.

 If no match occurs, the

main memory is accessed

for the word.

- Prepared by Er. Ishwar Kumar Singh

Associative Mapping

 Advantages:

• Flexibility to replace block when a new block is read into the

cache.

• Replacement Algorithm can be used to maximize the hit

ratio.

 Disadvantage: Complex Circuitry is required to examine the tags of

all cache lines in parallel.

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping
 In this method, blocks of cache are grouped into sets, and the

mapping allows a block of main memory to reside in any block of a

specific set.

 From the flexibility point of view, it is in between to the other two

methods.

 In this case, the cache is divided into ‘v’ sets, each of which consists

of ‘k’ lines.

 The relationships are m = v * k & i = j modulo v where,

m = number of lines in the cache, v = number of sets,

k = number of lines in each set

i = cache set number, j = main memory block number,

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping

- Prepared by Er. Ishwar Kumar Singh

Set-Associative Mapping
 When the CPU generates a memory request,

• the index values of the address is used to access the cache

• the tag field of the CPU address is then compared with both tags

in the cache

• the comparison logic is defined by an associative search of the

tags in the set.

- Prepared by Er. Ishwar Kumar Singh

Thank You.

