
OPERATOR OVERLOADING
&

DATA CONVERSION

OPERATOR OVERLOADING
Similar to function overloading, operator overloading is another polymorphism

feature in C++.

In function, we use the same function name for different contexts. Likewise, operator

overloading uses the same operators such as +, -, /, * in different scenarios.

The operators in C++ such as +, -, /, * can operate on int, float double, etc. But they

cannot operate on user-defined data types such as objects without extension; that is

writing an additional piece of code.

C++ permits us to make user-defined data types behave like built-in types by allowing

the overloading of operators.

Operator overloading is the method of giving additional meaning to the operators so

that they can also work with user-defined variables. For adding two complex

numbers, we have used the following statement:

c3.add(c1 , c2); or c3 = c1.add(c2);

Now, if we overload the + operator to add complex numbers, the above statement can

be replaced by

c3 = c1 + c2 // + is overloaded to act on objects

OVERLOADABLE OPERATORS
The significance of operator overloading is that user-defined data types behave like built-

in data types, thus allowing users to extend the language and making the code more

readable. C++ supports operator overloading, but at least the operand used with the

operator should be the instance of class i.e object of a class.

In C++, all operators can be overloaded except the following:

sizeof sizeof operator .

Member operator .* Pointer to

member operator :: Scope

resolution operator ?:

Conditional Operator

SYNTAX OF OPERATOR OVERLOADING
The operator function is defined with the keyword operator followed by the operator

symbol. Like a function, the operator function has a return type and arguments. The

operator function is in the following form:

return_type operator operator_symbol(arg_list) {

//Body of the function

}

The operator function can be declared as a member function of a class or as a friend

function of the class

class classname
{

//.......

};

public:

return_type operator operator_symbol(arg_list);
friend return_type operator operator_symbol(arg_list;

//as a member function
// as a friend function

RULES OF OPERATOR OVERLOADING
1.Only existing operators can be overloaded. New operators cannot be created.

2.The overloaded operator must have at least one operand that is of user-defined

type.

3. Overloaded operators follow the syntax rules of the original operators. They

cannot be overridden.

4. We cannot change the basic meaning of an operator i.e. we cannot redefine the

plus(+) operator to subtract one value from another.

5. Binary operators overloaded through a member function take one explicit

argument and those which are overloaded through a friend function take two

explicit arguments.

6. When using binary operators overloaded through a member function, the left

hand operand must be an object of the relevant class.

UNARY OPERATOR OVERLOADING
The operators which operate on a single operand(data) are called unary operators.

For member function of a class:

The unary operators in C++ are either prefix or postfix with the operand.

class class_name

{

public: return_type operator operator_symbol() //for prefix

};

{ return_type operator operator_symbol(int); //for postfix

...// body of function }

{ ...// body of function }

return_type classname:: operator operator_symbol()

{//body of the function }

For friend function of a class:

friend return_type classname:: operator operator_symbol(arg1);

Unary Operator Overloading
include <iostream>

using namespace std;

class Stud

{

int a,b;

public:

void input(){

} void display()

{

cout<<"\n Enter the value of a: ";

cin>>a; cout<<"\n Enter the value

of b: "; cin>>b;

cout<<"\n The values of a and b are " << a <<" and "<<b<<

endl;

}

void operator -();

};

void Stud::operator -()

{

a = -a;

b = -b;

}

 int main()

{

Stud S1,S2;

S1.input();

-S1;

S1.display();

return 0;

}

Output:

Enter the value of a: 1

Enter the value of b: -8

The value of a is: -1

The value of b is: 8

Unary Operator Overloading

#include <iostream>

using namespace std;

class Complex

{

int r, m;

public:

};

void input()

{

cout << "Enter real and imaginary part \n ";

cin >> r >> m;

cout << r << "+" << m << "i" << endl;

void operator --(Complex& c)

{

c.r = c.r - 1;

c.m =c.m - 1;

}

int main()

{

Complex c1;

c1.input();

--c1;

c1.display();

return 0;

}

Prefix operator overloading using friend function:

Output:

Enter real and imaginary part

4

5

3+4i

}
void operator --(Complex &);

}
void display()
{

BINARY OPERATOR OVERLOADING
The operators which operate on two operands(data) are called binary operators.

class class_name
{

The binary operator can also be defined as a non-member function of the class. The

binary operator defined as a non-member function has the following form:

return_type class_name::operator operator_symbol(class_name obj1, class_name obj2)

{

//body of function

}

public:

};

return_type operator_symbol(class_name arg){....}

BINARY OPERATOR OVERLOADING

In the binary operator using the friend function we can specify the order of the left

and right operand. The first argument implies left operand and second argument

implies right operand.

Note: In binary operator overloading using friend function we can specify left hand

operand as class object or built in data type. Same as in the right hand operand. But

in binary operator overloading using member functions the left and right hand

operand must be the object of the class which contains the operator function with

the right hand operand of the class or built in data type as argument to it.

Binary Operator Overloading
#include <iostream>

using namespace std;

class Complex

{

int r, m;

public:

};

void input()

{

cout << "Enter real and imaginary part " << endl;

cin >> r >> m;

{

cout << r << "+" << m << "i" << endl;

Complex Complex::operator + (int a){

}

int main(){

Complex temp;

temp.r = r+a;

temp.m = m+a;

return temp;

}

Complex c1, c2;

c1.input();

c2 = c1 + 2; // c1.operator+(2)

c2.display();

return 0;

Output:

Enter real and imaginary part

3

4

5+6i

}
void display()

}
Complex operator + (int);

Binary Operator Overloading
#include <iostream>

using namespace std;

class Complex

{

int r, m;

public:

};

void input()

{

cout << "Enter real and imaginary part" << endl;

cin >> r >> m;

cout << r << "+" << m << "i" << endl;

}

friend Complex operator + (Complex, int);

Complex operator + (Complex c, int a){

}

int main(){

Complex temp;

temp.r = c.r+a;

temp.m = c.m+a;

return temp;

}

Complex c1, c2;

c1.input();

c2 = c1 + 2; // operator+(2)

c2.display();

return 0;

Output:

Enter real and imaginary part

4

5

6+7i

}
void display()
{

Binary Operator Overloading

#include <iostream>

#include <math.h>

using namespace std;

enum Bool { FALSE, TRUE };

class Complex

{

int r;

int i;

public:

void input(){

cout << "Enter real and imaginary part" ;

cin >> r >> i;

cout << r << "+" << i << "i" << endl;

}

Bool operator < (Complex C){

}

Bool operator > (Complex C){

float m1 = sqrt(r*r + i*i);

float m2 = sqrt(C.r*C.r + C.i*C.i);

return (m1 < m2 ? TRUE : FALSE);

}

Bool operator == (Complex C){

float m1 = sqrt(r*r + i*i);

float m2 = sqrt(C.r*C.r + C.i*C.i);

return (m1 > m2 ? TRUE : FALSE);

}

};

float m1 = sqrt(r*r + i*i);

float m2 = sqrt(C.r*C.r + C.i*C.i);

return (m1 == m2 ? TRUE : FALSE);

WAP to compare the magnitude of a complex number by overloading <, > and ==

}
void display(){

Binary Operator Overloading
int main()

{

}

Complex c1, c2;

c1.input();

c2.input();

if(c1<c2)

cout << "1st complex number is less than 2nd complex number" << endl;

else if(c1>c2)

cout << "1st complex number is greater than 2nd complex number" << endl;

else if(c1==c2)

cout << "1st complex number is equal to 2nd complex number" << endl;

c1.display();

c2.display();

return 0;

Output:

Enter real and imaginary part 4 5

Enter real and imaginary part 6 7

1st complex number is less than 2nd complex number

4+5i

6+7i

Multiple Choice
questions on

Operator Overloading

1. What is operator overloading in C++?
A) Using operators to change the value of
variables.
B) Defining new operators in the language.
C) Providing a new implementation for an
existing operator to work with user-defined data
types.
D) Creating functions that have the same name
but different parameters

2.Which of the following operators can be
overloaded?
A) ++
B) &&
C) ?:
D) ::

3.What must be true for an operator function in
C++?
A) It must return a void type.
B) It must be defined as a friend function.
C) It must have at least one operand of a user-
defined type.
D) It must be a member function

4.Which operator cannot be overloaded in C++?
A) []
B) new
C) *
D) sizeof()

5.Which of the following is not a valid reason for
using operator overloading?
A) To perform object-oriented programming.
B) To allow user-defined types to behave like
fundamental types.
C) To increase the complexity of the code.
D) To provide intuitive syntax for operations on
user-defined types.

6.What is the syntax of overloading operator +
for class A?
a) A operator+(argument_list){}
b) A operator[+](argument_list){}
c) int +(argument_list){}
d) int [+](argument_list){}

7.How many approaches are used for operator
overloading?
a) 1
b) 2
c) 3
d) 4

8. In the case of friend operator overloaded
functions how many maximum object arguments
a binary operator overloaded function can take?
a) 1
b) 2
c) 3
d) 0

9. What will be the output of the following C++
code?
#include <iostream>
#include <string>
using namespace std;
class complex
{
 int i;
 int j;
 public:
 complex(){}
 complex(int a, int b)
 {
 i = a;
 j = b;
 }
 complex operator+(complex c)
 {
 complex temp;
 temp.i = this->i + c.i;
 temp.j = this->j + c.j;
 return temp;
 }

void show(){
cout<<"Complex Number: "<<i<<" + i"<<j<<endl;
 }
};

int main()
{
 complex c1(1,2);
 complex c2(3,4);
 complex c3 = c1 + c2;
 c3.show();
 return 0;
}

a) Complex Number: 4 + i6
b) Complex Number: 2 + i2
c) Error
d) Segmentation fault

10. Which is the correct statement about
operator overloading?
a) Only arithmetic operators can be overloaded
b) Only non-arithmetic operators can be
overloaded
c) Precedence of operators are changed after
overlaoding
d) Associativity and precedence of operators
does not change

11. What is the keyword for separting the pre and
post increment/decrement operator for
overloading operator in C++?

a) Void
b) Null
c) Float
d) int

DATA CONVERSION
The = operator will assign a value from one variable to another in statements like

int var1 = int var2;

where int var1 and int var2 are integer variables.

We may also have noticed that = assigns the value of one user-defined object to another,

provided they are of the same type, in statements like

dist3 = dist1 + dist2;

where the result of the addition, which is type Distance, is assigned to another object of

type Distance, dist3.

Normally, when the value of one object is assigned to another of the same type, the

values of all the member data items are simply copied into the new object. The compiler

doesn’t need any special instructions to use = for the assignment of user-defined

objects such as Distance objects.

What if the assignment operator is used for different type i.e., float to int or int to user-

defined. Conversion between user defined type and built in type cannot be performed

implicitly by the compiler but C++ allows type conversion between them from after the

rules for the type conversion have been defined.

DATA CONVERSION
 Three types of situations arise in the data conversion between incompatible types:

Conversion from basic type to user defined

Conversion from user defined to basic type

Conversion from one user defined to another user defined

A basic to class conversion can be performed through a constructor with arguments of basic

type. The constructor must have only one argument.

constructor (basic type) {

// conversion steps;

}

Basic to User defined Conversion

#include<iostream>

using namespace std;

class Complex

{

int r;

int m;

public:

Complex()

{

r=0;

m=0;

}

Complex(int a) // for Basic to Class conversion

{

r=a;

m=0;

}

void display()

{

cout<<"\nThe real is:"<<r;

cout<<"\nThe imag is:"<<m;

}

};

int main()

{

Complex c1;

c1=9;

c1.display();

return 0;

}

Output:

The real is:9

The imag is: 0

user defined to Basic type conversion can be achieved using operator function. C++ allows

us to define an overloaded casting operator that could be used to convert a class type data

to a basic type.

operator typename()

{

// conversion statements

}

This function is defined inside a class. The object of this class is converted by the statements

in the body of function and returns a variable of type name.

User defined to Basic Conversion

User defined to Basic Conversion
#include<iostream>

#include<cmath>

using namespace std;

class Complex

{

int r;

int m; public:

void input()

{

}

void display()

{

cout<<"\nEnter the value of r & m";

cin>>r>>m;

cout<<"\nReal:"<<r;

cout<<"\nImag:"<<m;

}

operator float()

{

float m1;

m1=sqrt(r*r+m*m);

return m1;

}

 };

 int main()

{

Complex c1;

c1.input();

float magnitude=c1;

cout<<"\nThe magnitude is :"<<magnitude;

return 0;

} Output:

Enter the value of r & m 3 4

The magnitude is :5

User defined to user defined conversion requires identification of source class and

destination class. The right hand operand of the assignment operator acts as destination

class operand and left hand sided operand is source class operand.

For example, obj1 = obj2;

If obj1 is an object of class A and obj2 is an object of class B, then class A is the destination

class and class B is the source class.

User defined to user defined Conversion can be performed in two ways:

o using constructor

o using operator function

User defined to User defined Conversion

};

#include<iostream>

using namespace std;

class Grade

{

float d;

public:

void input() {

cout<<"\nEnter Grade:";

cin>>d;

}

float getGrade(){

return d;

}

class Radian

{

float r;

public:

Radian(){

r=0.0;

}

Radian(Grade);

void display(){

cout<<"\nThe radian is:"<<r;

}

};

Radian::Radian(Grade G){

r=(G.getGrade()*3.14)/200;

}

int main()

{

Grade G1;

Radian R1;

G1.input();

R1=G1;

R1.display();

return 0;

}

Output:

Enter Grade:50

The radian is:0.785

When using constructor, the constructor is defined inside the destination class and

the object of source class type is the argument of the constructor.

User defined to User defined Conversion

};

#include<iostream>

using namespace std;

class Radian;

class Grade{

float d;

public:

void input() {

cout<<"\nEnter Grade:";

cin>>d;

}

Grade(){

d=0.0;

}

operator Radian();
};

class Radian

{

float r;

public:

Radian(){

r=0.0;

}

void display(){

cout<<"\nThe radian is:"<<r;

}

void setRadian(float r){

this->r=r;

}

User defined to User defined Conversion
When using operator function, the function is defined inside source class with a

return of destination class object.

Output:

Grade to Radian

Enter Grade:100

The radian is:1.57

User defined to User defined Conversion

Grade:: operator Radian(){

Radian R;

R.setRadian(d*3.14/200);

return R;

}

int main()

{

Grade G1;

cout<<"\nGrade to Radian ";

G1.input();

Radian R1;

R1=G1;

R1.display();

return 0;

}

EXPLICIT CONSTRUCTOR
There may be situations where you don't want some type conversions to take place.

It is easy to prevent conversion using a casting function, just don't define a casting function

inside the class.

However, preventing through constructors is not as easy, as you may need one argument

constructor to initialize the data member of the class.

Therefore, to prevent this implicit conversion, ANSI C++ standards have defined a keyword

explicit.

};

class XYZ

{

int A;

public:

explicit XYZ(int m)

{

A = m;

} … . . / / o t h e r m e m b e r s

Now, when an object of XYZ is declared as below:

XYZ obj(5); //object can be created

But,

XYZ obj1 = 45; //This is not allowed and is illegal

Multiple Choice
questions on Data

Conversion

1. What is the correct way to explicitly convert a
float to an int in C++?

A) int x = (float)num;
B) int x = static_cast<int>(num);
C) int x = convert<int>(num);
D) int x = int(num);

2. What is the process called when a double is
automatically converted to an int by the
compiler?

A) Explicit conversion
B) Implicit conversion
C) Typecasting
D) Overloading

3. Which of the following is not a valid C++ type
conversion?

A) double to int
B) char to int
C) int to double
D) string to int

4. Which of the following operators can be used
for explicit type conversion in C++?

A) cast
B) convert
C) static_cast
D) reinterpret_cast

5. Which of the following is an example of a user-
defined conversion function in C++?

a) A constructor that takes a single parameter
b) A destructor that takes no parameters
c) A member function that returns a value of a

different type
d) None on the above

6.What is the syntax for the conversion operator
in C++?

a) operator returnType() const
b) operator returnType() const()
c) returnType operator() const;
d) None of the above

7. Which of the following is not a valid data type
conversion in C++?

a) Implicit conversion
b) Explicit conversion
c) Dynamic conversion
d) None

INHERITANCE

INHERITANCE

1.Capability of expressing the inheritance relationship that ensures closeness with the

real

2.Allows reusability of code, i.e., addition of additional features to an existing class

without modifying it.

3.Reusing existing code that has already been debugged saves time and money and

increases a program’s reliability.

Inheritance is the process of creating new classes, called derived classes, that inherit

properties from existing or base classes.

The derived class inherits all the capabilities of the base class but can add

embellishments and refinements of its own.

The base class is unchanged by this process.

Inheritance is an essential part of object oriented programming. It provides code

reusability.

Need for Inheritance

BASE AND DERIVED CLASS
A Derived class is the class which inherits the property of another class. The class

from which the properties are inherited is known as base class. Derived class is also

known as subclass or child class. Base class is also known as the parent class. The base

class is unchanged by this inheritance process.

PROTECTED ACCESS SPECIFIER
Private access specifiers cannot be inherited and public members are inheritable but

directly accessible through objects. Protected access specifier is used when the data

members or member functions are required to be inheritable but inaccessible

through objects. Like private members, they can be accessed only through functions.

So, If you are writing a class that you suspect might be used, at any point in the future,

as a base class for other classes, then any data or functions that the derived classes

might need to access should be made protected rather than private. This ensures that

the class is “inheritance ready”.

DERIVED CLASS DECLARATION
class derived_class_name : visibility_mode base_class_name

{

// members

};

The classname is followed by colon(:), visibility mode and base class name

respectively. Visibility mode may be private, public, or protected.

Note: By default the visibility mode is private.

For inheritance from multiple classes, commas are used as shown below:

class derived_name : visibility base1_name, visibility base2_name

{

// members

};

Visibility mode

Private Members of Base class are never inherited.

In public visibility mode, the public members are inherited as public members of derived

class and protected members are inherited as protected members i.e. members are inherited

in the same access specifier.

Private visibility mode inherits both public and protected members in the private access

section of the derived class.

Protected visibility mode inherits both public and protected members into the protected

section of the derived class.

/* single inheritance */

#include<iostream>

using namespace std;

class Base

{

protected:

};

int a;

public:

void inputBase()

{

cout<<"enter the value of a:";

cin>>a;

cout<<"the value of a is:"<< a;

cout<<endl;

}

class Derived: public Base

{

};

int main()

{

}

int b;

public:

void inputDerived()

{

Derived D1;

D1.inputDerived();

cout<<"Displaying the taken value:";

cout<<endl;

D1.displayBase();

D1.displayDerived();

return 0;

inputBase();

cout<<"enter a value of b:";

cin>>b;

}
void displayDerived()

{

displayBase();

cout<<"the value of b is:"<< b;
cout<<endl;

cout <<"the sum ="<< a+b;
cout<< endl;

}

Output:

enter the value of a:3

enter a value of b:5

Displaying the taken value:

the value of a is:3

the value of a is:3

the value of b is:5

the sum =8

}
void displayBase()
{

MEMBER FUNCTION OVERRIDING
The process of creating members in the derived class with the same name as that of the

visible members of the base class is known as function overriding.

It is called overriding because the new name in the derived class overrides (hides or

displaces) the old name inherited from the base class.

If we define a function on a derived class in the same name as an overloaded function in

a base class, even with a different parameter list, the base class functions are hidden.

C++ has a mechanism to access those functions; the base member can be accessed with

the base class name and scope resolution operator before the function name.

Redeclaration of member functions in derived class which is already defined inside

visible sections (private and public) of base is known as function overriding.

In the next example, ‘Derived’ class is inherited from ‘Base1’ and ‘Base2’. All the classes have input()

and display() functions. This is function overriding as the derived class has the same functions as

base class. In main(), when input() and display() are invoked, the functions of the derived class are

called.

Function Overriding

};

Note: The overridden functions of a base class can be invoked in two ways:

1. From the member function of the derived class

2. From the object of derived class by using the scope resolution operator.(eg: obj.base::display();)

#include<iostream>

using namespace std;
class Base1
{

class Base2

{
protected:

protected:
int a;

int a;
public:

public:
void input(){

void input(){
cout<<"enter value of a for Base2: ";

cin >> a;
cout<<"enter value to a of Base1: ";
cin >> a;

}
void display(){}

void display(){
cout<<"the a of Base2 is: " << a << endl;

cout <<"the a of Base 1 is:" << a << endl;
}

}
};

};

class Derived: public Base1, public Base2

{
int main()

{
protected:

int c;

public:

Derived D1;

D1.Base1::input();

D1.Base2::input();

D1.input();

cout<<"displaying the taken value:" << endl;

D1.display();

return 0;

void input()

{

cout<<"enter the value of c: ";

cin >> c;

}
void display()

{

}

Base1::display();

Base2::display();
cout<<"the value of c is:" << c << endl;

cout<<"the sum is:" << Base1::a + c + Base2::a << endl;
}

Output:

enter value to a of Base1: 3

enter value to a of Base2: 4

enter the value of c: 5

displaying the taken value:

the a of Base1 is:3

the a of Base2 is:4

the value of c is:5

the sum is:12

Function Overriding

FORMS OF INHERITANCE

This is the simplest form of inheritance. One derived class is inherited from

one base class.

Syntax:

class derived_class_name: visibility_mode base_class_name

{

};

............. DERIVED CLASS

#include <iostream.h>
class Value

{
protected:

int val;
public:

void set_values (int a){
val=a;

}
};

class Cube: public Value
{

public:
int cube()

{

}
};

int main ()
{

Cube cub;
cub.set_values (5);

cout << "The Cube of 5 is::" << cub.cube() <<
endl;

return 0;
}

return (val*val*val);

Single inheritance
BASE CLASS

When a derived class is inherited from two or more base classes it is known as multiple

inheritance.

class derived_class_name : visibility_mode base_class1, visibility_mode base_class2, {

..............

};

Multiple inheritance

BASE CLASS
1

DERIVED CLASS

BASE CLASS 2

#include<iostream>

using namespace std;

class Base1

{

protected:

int a;

public:

void inputBase1() {

cout<<" enter the value of a:" << endl;

cin >> a;

}

void displayBase1()

{

cout<<"the value of a is:"<< a << endl;

}

};

class Base2

 {

protected:

int b;

public:

void inputBase2() {

cout<<"enter the value of b:" << endl;

cin >> b;

 }

void displayBase2() {

cout<<"the value of b is:" << b << endl;

}

};

Multiple inheritance

class Derived:public Base1, public Base2

{

int c;

public:

void inputDerived(){

cout<<"enter the value of c:" << endl;

 cin >> c;

inputBase1();

inputBase2();

}

void displayDerived()

{

displayBase1();

displayBase2();

cout<<"the value of c is:" << c << endl;

cout<<"the sum is:" << a+b+c << endl;

 }

 };

int main()

{

Derived D1;

D1.inputDerived();

cout<<"displaying the taken value: "<< endl;

D1.displayDerived();

return 0; }

Multiple inheritance

Output:

enter the value of c: 3

enter the value of a: 1

enter the value of b: 2

displaying the taken value

the value of a is: 1

the value of b is: 2

the value of c is: 3

the sum is: 6

Ambiguity in multiple inheritance
When a derived class is inherited from multiple base classes,i.e., two or more base classes,

and the base classes have the same functions, ambiguity arises. This ambiguity can be

removed using the scope resolution operator (::).

In the next example, ‘Derived’ class is inherited from ‘Base1’ and ‘Base2’. Both ‘Base1’ and ‘Base2’

have the same functions input() and display(). When inherited into ‘Derived’, ambiguity arises as it

is unclear whether the function of ‘Base1’ or ‘Base2’ is to be called. So, scope resolution is used to

resolve this ambiguity.

Ambiguity in multiple inheritance

};

#include<iostream>

using namespace std;

class Base1

 {

protected:

int x;

public:

void input()

{

cout<<"enter value to x of Base1: ";

cin >> x;

} void

display()

{

cout <<"the x of Base 1 is:" << x << endl;

}

};

class Base2

{

protected:

int x;

public:

void input()

{

cout<<"enter value of x for Base2: ";

cin >> x;

}

void display()

{

cout<<"the x of Base2 is: " << x << endl;

}

Ambiguity in multiple inheritance

};

class Derived: public Base1, public Base2

{
int main()

{
protected:

int c;

public:

Derived D1;

D1.inputDerived();

cout<<"displaying the taken value:" << endl;

D1.displayDerived();

return 0;

void inputDerived(){

cout<<"enter the value of c: ";

cin >> c;
Base1::input();

Base2::input();

}

}

void displayDerived(){
Base1::display();

Base2::display();
cout<<"the value of c is:" << c << endl;

cout<<"the sum is:" << Base1::x + c + Base2::x << endl;
}

Output:

enter the value of c: 5

enter value to x of Base1: 4

enter value of x for Base2: 3

displaying the taken value:

the x of Base 1 is:4

the x of Base2 is: 3

the value of c is:5

the sum is:12

When a derived class acts as a base class for another class, it is known as multilevel inheritance.

Multilevel inheritance

BASE CLASS
1

DERIVED CLASS 2

DERIVED CLASS
1

#include <iostream>

using namespace std;

class A{

protected:

int a;

public:

void inputA() {

cout << "Enter the value of a:";

cin >> a;

}

void displayA() {

cout << "a = " << a << endl;

}

};

class B: public A

{

protected: int b;

public: void inputB()

{

inputA();

cout << "Enter the value of

b:"; cin >> b;

}

void displayB()

{

displayA();

cout << "b = " << b << endl;

 }

 };

Multilevel inheritance

class C: public B

{

int c;

public:

void inputC()

{

inputB();

cout << "Enter the value

of c:"; cin >> c;

}

void displayC()

{

displayB();

cout << "c = " << c << endl;

}

 };

int main() {

C obj;

obj.inputC();

obj.displayC();

return 0;

}

Multilevel inheritance

Output:

Enter the value of a:1

Enter the value of b:2

Enter the value of c:3

a = 1

b = 2

c = 3

When two or more classes from one base class, it is known as hierarchical inheritance.

Hierarchical inheritance

DERIVED CLASS
1

BASE CLASS

DERIVED CLASS 2 DERIVED CLASS 3

#include <iostream>

using namespace std;

class A {

protected:

int a;

public:

void inputA() {

cout << "Enter the value of a:";

cin >> a;

}

void displayA() {

cout << "a = " << a << endl;

}

};

class B: public A

{

protected:

 int b;

public:

 void inputB()

{

inputA();

cout << "Enter the value of b:";

cin >> b;

}

void displayB()

{

 displayA();

 cout << "b = " << b << endl;

}

};

Hierarchical inheritance

class C: public A

{

 int c;

public:

void inputC()

{

inputA();

cout << "Enter the value of c:";

cin >> c;

}

void displayC()

{

displayA();

cout << "c = " << c << endl;

}

};

int main()

{

cout << "Class B" << endl;

B obj1;

obj1.inputB();

obj1.displayB();

cout << "Class C" << endl;

C obj2;

obj2.inputC();

obj2.displayC();

return 0; }

Output:

Class B

Enter the value of a:1

Enter the value of b:2

a = 1

b = 2

Class C

Enter the value of a:3

Enter the value of c:4

a = 3

c = 4

Hierarchical inheritance

Hybrid Inheritance is a combination of more than one of the previous inheritance types(multiple,

multilevel, hierarchical).

When a base class is derived to two or more derived classes, and these derived classes are again

combined as base class to another derived class, then this type of inheritance is known as

multipath inheritance.

Hybrid inheritance

Multipath inheritance

DERIVED CLASS
1

BASE CLASS
1

DERIVED CLASS 3

DERIVED CLASS 2

Multipath inheritance can pose some problems in compilation. The public and protected members

of grandparent are inherited into the child class twice, first, via parent 1 class and then via parent

2 class. Therefore, the child class would have duplicate sets of members of the grand- parent

which leads to ambiguity during compilation and it should be avoided. It can be resolved adding

virtual to the access specifier

class A //grandparent

{..........};
class B1 : virtual public A //parent 1
{.............};
class B1 : public virtual A //parent 2
{.............};
class C :public B1 , public B2 //child
{............. //only one copy of A will be inherited

………..
};

The keyword virtual and public or protected
may be used in any order. After adding the

keyword virtual while creating

classes parent1 and parent2, it ensures that
only one copy of the properties of class
grandparent is inherited in the class child

which is derived from classes parent1 and
parent2.

Multipath Inheritance and Virtual Base Class

#include<iostream>

using namespace std;

 class Aclass

{

protected:

int a;

public:

void inputA()

{

cout<<"enter the value of a: ";

cin >> a;

}

};

class Bclass: virtual public Aclass

{

protected:

int b;

public:

void inputB()

{

cout<<"enter value of b: " ;

cin >> b;

}

};

class Cclass:public virtual Aclass

{

protected:

int c;

public:

void inputC()

{

cout<<"enter value of c: ";

cin >> c;

}

};

Multipath Inheritance and Virtual Base Class

class Derived: public Bclass, public Cclass

{

protected:

int d;

public:

void inputD()

{

cout<<"enter value of d:" << endl;

cin >> d;

}

void display(){

cout<<"the value of a is:" << a << endl;

cout<<"the value of b is:" << b << endl;

cout<<"the value of c is:" << c << endl;

cout<<"the value of d is:" << d << endl;

cout<<"the sum is:" << (a+b+c+d) << endl;

} };

int main(){

Derived D1;

D1.inputA();

D1.inputB();

D1.inputC();

D1.inputD();

D1.display();

return 0;

}

Output:

enter the value of a: 1

enter value of b: 3

enter value of c: 4

enter value of d: 5

the value of a is: 1

the value of b is: 3

the value of c is: 4

the value of d is: 5

the sum is: 13

Multipath Inheritance and Virtual Base Class

Note: If a base class has a parameter constructor then there must be a constructor inside a

derived class which passes a value to a base class parameters constructor through

initialization list.
/*parameterized constructor through initialization list*/

#include<iostream>

using namespace std;

class Base1

{

int a;

public:

Base1(int a){

 cout<<"Base1 constructor:" << endl; this ->a = a;

}

~Base1(){

cout<<" Base1 destructor:" << a << endl;

}
};

class Base2

{

int c;

public:

Base2(int c)

{

this ->c = c;

cout<<"Base2 constructor:" << endl;

}

~Base2(){

 cout<<"Base2 destructor:" << c << endl;

}

};

Constructor Invocation in Single and Multiple Inheritances

class Derived: public Base2, public Base1

{

int main()

{

}

int d;

public:

Derived D1;

Derived D2(1,2,3);

return 0;Derived(): Base1(10), Base2(20)

{

d=0;

cout<<"Derived constructor:" << endl;

}

Derived(int x, int y, int z): Base1(x), Base2(y)

{

}

;

d=z; cout<<"Derived constructor:" << endl;

cout<<"Derived destructor:" << d << endl;

}

Output:

Base2 constructor:

Base1 constructor:

Derived constructor:

Base2 constructor:

Base1 constructor:

Derived constructor:

Derived destructor:3

Base1 destructor:1

Base2 destructor:2

Derived destructor:0

Base1 destructor:10

Base2 destructor:20

Constructor Invocation in Single and Multiple Inheritances

}
~Derived()
{

/* constructor in simple inheritance */

#include<iostream>

using namespace std;

class Base1{

int x;

public:

Base1(){

cout<<"Base constructor" << endl;

}

~Base1(){

cout<<"Base destructor" << endl; }

};

class Derived: public Base1{

int c;

public:

Derived(){

cout<<"Derived constructor" << endl;

}

~Derived(){

cout<<"Derived destructor" << endl;

}

};

int main() {

Derived D1;

return 0; }

Constructor Invocation in Single and Multiple Inheritances

Output:

Base constructor

Derived constructor

Derived destructor

Base destructor

/* access private of base class in derived class*/

#include<iostream>

using namespace std;

class Base1

{

} };

class Derived: public Base1

{

};

int c;

public:

void inputD()

{

int x;

public:

void inputB(){ cout<<"enter the value of c:" << endl;

cin >> c;cout<<"enter value to x of Base1:" << endl;

cin >> x; }

void displayD()

{

}

void display(){

cout<<"the x of Base1 is:" << x; display();

cout<<" the value of c is:" << c << endl;

cout<<" the sum is:" << returnx() + c << endl;

}

int returnx(){

return x; }

Constructor Invocation in Single and Multiple Inheritances

int main()

{

Derived D1;

cout<<"the num of data element inside derived class:" <<sizeof(D1)/sizeof(int) << endl;

D1.inputB();

D1.inputD();

cout<<"Displaying the taken value:" << endl;

D1.displayD();

return 0;

}

Output:

enter value to x of Base1: 5

enter the value of c: 3

Displaying the taken value:

the x of Base1 is:5

the value of c is:3

the sum is:8

Constructor Invocation in Single and Multiple Inheritances

Destructor Invocation in Single and Multiple Inheritances

Destructor in single inheritance
When an object of derived class is created, first the base class constructor is

invoked, followed by the derived class constructors. When an object of derived

class expires, first the derived class destructor is invoked, followed by the base

class destructor. Constructors and destructors of base class are not inherited by

the derived class. Besides, whenever the derived class needs to invoke base class’s

constructor or destructor, it can invoke them through explicitly calling them.

#include<iostream>

using namespace std;

class base

 {

public:

base() {

cout<<”\nBase Class Constructor.”;

}

~base() {

cout<<”\nBase Class Destructor.”;

} };

class derived : public base

{

public:

derived() {

cout<<”\nDerived Class Constructor.”;

}

~derived() {

cout<<”\nDerived Class Destructor.”;

} };

int main()

{

Derived D1;

return 0;

}

Output:

Base constructor

Derived constructor

Derived destructor

Base destructor

Destructor in single inheritance

Destructor Invocation in Single and Multiple Inheritances

Destructor in multiple inheritance
In multiple inheritance, the base classes are constructed in the order in which they

appear in the declaration of the derived class. The destructor execute in reverse

order to that of constructor i.e., destructor of the derived class is called and then

the destructor of the base class which is last, in declaration of derived class and

followed by base class in reverse order.

#include<iostream>

using namespace std;

class base1

 {

public: base1()

{

 cout<<”\nBase1 Class Constructor.”;

}

~base1()

{

cout<<”\nBase1 Class Destructor.”;

}

};

class base2

{

public:

base2()

{

cout<<”\nBase2 Class Constructor.”;

}

 ~base2()

{

cout<<”\nBase2 Class Destructor.”;

}

 };

Destructor in multiple inheritance

class derived : public base1, public base2

{

public:

derived()

{

 cout<<”\nDerived Class Constructor.”;

}

~derived()

{

cout<<”\nDerived Class Destructor.”;

}

};

int main()

{

Derived D1;

return 0;

}

Output:

Base1 Class Constructor.

Base2 Class Constructor.

Derived Class Constructor.

Derived Class Destructor.

Base2 Class Destructor.

Base1 Class Destructor.

Destructor in multiple inheritance

Multiple Choice
questions on
Inheritance

1. What is Inheritance in C++?

a) Wrapping of data into a single class
b) Deriving new classes from existing classes
c) Overloading of classes
d) Classes with same names

2. Which specifier makes all the data members
and functions of base class inaccessible by the
derived class?

a) private
b) protected
c) public
d) both private and protected

3. How many specifiers are used to derive a
class?

a) 1
b) 2
c) 3
d) 4

4. If a class is derived privately from a base class
then ______________________________

a) no members of the base class is inherited
b) all members are accessible by the derived
class
c) all the members are inherited by the class but
are hidden and cannot be accessible
d) no derivation of the class gives an error

5. What is the order of Constructors call when
the object of derived class B is declared,
provided class B is derived from class A?

a) Constructor of A followed by B
b) Constructor of B followed by A
c) Constructor of A only
d) Constructor of B only

6. Which of the following can derived class
inherit?

a) members
b) functions
c) both members & functions
d) classes

7. What is the order of Destructors call when the
object of derived class B is declared, provided
class B is derived from class A?

a) Destructor of A followed by B
b) Destructor of B followed by A
c) Destructor of A only
d) Destructor of B only

8. What is meant by multiple inheritance?

a) Deriving a base class from derived class
b) Deriving a derived class from base class
c) Deriving a derived class from more than one
base class
d) Deriving a derived base class

9. Which of the following is the correct syntax for
declaring a derived class in C++?

A) class Derived : public Base {};
B) class Derived inherits Base {};
C) class Derived extends Base {};
D) class Derived implements Base {};

10.Which constructor is called first in a
multilevel inheritance hierarchy in C++?

a)The most derived class constructor
b) The base class constructor
c) Both are called at the same time
d) None of the above

11.Which of the following is true about hybrid
inheritance in C++?

a) It combines two or more types of inheritance
b) It only allows for single inheritance
c) It only allows for multiple inheritance
d) None

12. In the case of virtual inheritance, which
constructor is called first?
A) The constructor of the virtual base class.
B) The constructor of the derived class.
C) The constructor of the non-virtual base class.
D) The order of constructor calls is undefined.

13. Which of the following is true about the
virtual keyword in C++?

a) It is used to create a virtual base class
b) It is used to create a virtual function
c) It is used to create a virtual object
d) None of the above

14.What is the syntax for calling a base class
constructor from a derived class constructor in
C++?

a) base::base();
b) super::super();
c) base::base(arguments);
d) None of the above

15.Which keyword is used to call the base class
contructor in the derived class constructor?

a) this
b) super
c) base
d) none

16. What is the order of execution of
constructors in a multilevel inheritance hierarchy
in C++?

a)Constructors are executed in random order
b) From the most derived class to the base class
c) From the base class to the most derived class
d) None

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

