
3.3 C++ LANGUAGE CONSTRUCTS WITH
OBJECTS AND CLASSES

1.NAMESPACE
2.FUNCTION OVERLOADING
3.INLINE FUNCTION
4.DEFAULT ARGUMENT
5.PASS/RETURN BY REFERENCE
6.INTRODUCTION TO CLASS AND OBJECT
7. ACCESS SPECIFIERS
8.OBJECTS AND THE MEMBER ACCESS
9.DEFINING MEMBER FUNCTION
10.CONSTURCTOR AND ITS TYPES, DESTRUCTOR
11.DYNAMIC MEMORY ALLOCATION FOR OBJECTS AND OBJECT ARRAY
12.this POINTER
13.STATIC DATA MEMBER AND STATIC FUNCTION
14.CONSTANT MEMBER FUNCTIONS AND CONSTANT OBJECTS
15.FRIEND FUNCTION AND FRIEND CLASSES

NAMESPACE
The namespace is used for the logical grouping of program elements like

variables, classes, functions, etc. If some program elements are related to each

other, they can be put into a single namespace. The namespace helps to localize

the name of identifiers so that there is no naming conflict across different

modules designed by different members of programming team.

Example:

namespace myNamespace
{
int a, b;
void name();
}

Syntax for defining namespace is as follows:
 namespace namespace_name {

//declaration of variables, functions,classes etc

} // no semicolon at the end

NAMESPACE
In this case, a and b are normal variables and

name() is a user-defined function declared

within a namespace called myNamespace. In

order to access these variables and user-

defined functions from outside the

myNamespace namespace, we have to use

the scope resolution operator (: :).For

example, to access the previous variables

and function from outside myNamespace we

can write:

1. myNamespace::a

2. myNamespace::b

3. void myNamespace::name()

Example:

namespace myNamespace

{

int a, b;

void name();

}

NAMESPACE
The functionality of namespaces is especially useful in the case that there is a

possibility that a global object or function uses the same identifier as another one,

causing ambiguity (redefinition) errors. For example:

// namespaces

#include <iostream>

using namespace std;

namespace first

{

int var = 5;
}
namespace second
{
double var = 3.1416;
}

int main () {

cout<< first::var<< endl;

cout << second::var << endl;

return 0;

}
Output:
5
3.1416 In this case, there are two global variables

with the same name: var. One is defined
within the namespace first and the other
one in second. No redefinition errors
happen thanks to namespaces.

NAMESPACE

Example:

#include<iostream>

using namespace std;

namespace Rectangle

{

int width;

int height;

void area();

}

int main() {

Rectangle::width = 10;

Rectangle::height = 2;

Rectangle::area();

return 0;

}

void Rectangle::area()

{ c

out << "\nThe Area is: " << width*height << endl;

}

Output: The Area is: 20

Multiple Choice
questions on
Namespace

1. What is the use of Namespace?

a) To encapsulate the data
b) To structure a program into logical units
c) Encapsulate the data & structure a program
into logical units
d) It is used to mark the beginning of the program

2. What is the general syntax for accessing the
namespace variable?

a) namespace,operator
b) namespace::operator
c) namespace#operator
d) namespace$operator

3. Which keyword is used to access the variable in
the namespace?

a) dynamic
b) Const
c) using
d) static

4. What is namespace in C++?

a)It is a block of code that is used to group
related variables and functions
b) It is a feature that allows a class to inherit from
multiple base classes
c) It is a type of loop in C++
d) It is a mechanism for managing the scope of
identifiers in large programs

5. What will be the output of the following C++
code?

#include <iostream>
 using namespace std;
 namespace first
 {
 int var = 5;
 }
 namespace second
 {
 double var = 3.1416;
 }
 int main ()
 {
 int a;
 a = first::var + second::var;
 cout << a;
 return 0;
 }
a) 8
b) 8.31416
c) 9
d) compile time error

6. What will be the output of the following C++ code?
 #include <iostream>
 using namespace std;
 namespace first{
 int x = 5;
 int y = 10;
}
 namespace second {
 double x = 3.1416;
 double y = 2.7183;
}
 int main (){
 using first::x;
 using second::y;
 bool a, b;
 a = x > y;
 b = first::y < second::x;
 cout << a << b;
 return 0;
 }
a) 11
b) 01
c) 00
d) 10

FUNCTIONS
Function Syntax

Function Declaration/Prototype:

return_type function_name(parameter list);

Function Definition:

return_type function_name(parameter list)

{

body_of _the_function

}

Function Call:

function_name(list of variables or values);

FUNCTIONS

Function Overloading

C++ enables several functions of the same name to be defined as long as

these functions have different sets of parameters. This capability is

called function overloading/function polymorphism.

The correct function to be invoked is determined by checking the

number, types and order of the arguments in the call.

Function Overloading Example
#include <iostream>

using namespace std;

void sum(int a, int b)

{

cout<<”Function 1: The sum is : ” << (a+b) << endl;

}

void sum(int a, double b, int c)

{

cout<<”Function 2: The sum is : ” << double(a+b+c) << endl;

}

int main()

{

}

OUTPUT:
Function 1 : The sum is : 50

Function 2 : The sum is : 90.1

sum(20, 30);

sum(20, 30.10, 40);

return 0;

FUNCTIONS
Inline Functions

Inline Function is a function which expands to a line where it is invoked or called

instead of jumping to the function itself. It is declared using the keyword inline in

the function definition.

inline return_type function_name(list of arguments)

{

//body of the function

}

Inline functions increase the speed of execution of the program but it also

increases the size of the program.

So it is used only for small functions. A function cannot be made inline:

If static variable is declared inside the function

If a function returns a value where return type is specified

If function contains loop, switch or goto

If a function is recursive

FUNCTIONS
Inline Functions

The inline keyword is just a request to the compiler to make a function

inline function. The compiler may ignore the request if the function

definition is too long or complicated and compile the function as a

normal function.

All the inline functions must be defined before they are called.

Note: Inline functions serve the same function as #define macro (generally

used in C) but it provides better type checking and do not require special

care for parentheses.

FUNCTIONS
Default Arguments
Default arguments are the default values provided to the arguments of the

function. The default values are assigned during function declaration. The

default value is used if the value is not passed during the function call.

Otherwise, it uses the passed value.

Default arguments must be provided from the rightmost parameter in the

argument list.

float interest(float p; int time; int rate = 0.5); float

interest(float p = 1000; int time = 1; int rate); //error

float interest(float p; int time = 1; int rate); //error

In the function call, any argument in a function cannot have a default value

unless all arguments appearing on its right have their default values.

Default Arguments Example
#include <iostream>

using namespace std;

float interest(float p = 1000, int time = 1, int rate = 0.5)

{

return (p * time * rate);

}

int main()

{

cout<< “Interest =” << interest() <<endl;

cout << “Interest =” << interest(1200) << endl;

cout << “Interest =” << interest(1200, 10) << endl;

cout << “Interest =” << interest(1500, 10, 0.7) << endl;

return 0;

}

A function having N default arguments can be invoked in N+1 different ways as shown by the
above example.

FUNCTIONS

Default Arguments

Note: Ambiguity arising when both function overloading and function with

default arguments are used must be avoided.

Eg:

void function(int x, int y=0);

void function(int x);

Ambiguity arises when the function is called using only one integer as

argument.

FUNCTIONS
Pass by Reference
Usually when a function is called, the arguments are copied into function and the

function works on the copied value. Thus, the original value is not changed. If the

original value must be changed then arguments must be passed by reference. It

can be achieved in two ways:

using reference variable

using pointer

Passing by reference using reference variable vs using pointer

using a reference variable saves memory as memory is not allocated for a

pointer variable.

using a reference variable is easier as no referencing / dereferencing is

required like in pointers.

reference variable references only a particular address it was first used to

reference and hence works like a constant pointer. Using a pointer allows

us to use the same pointer to point different addresses when required.

Pass By Reference Example
#include <iostream>

using namespace std;

//pass by value

void swap1(int a, int b)

{

int temp = b;

b = a;

a = temp;

}

//pass by reference using reference variable

void swap2(int &a, int &b)

{

int temp = b;

b = a;

a = temp;

}

//pass by reference using pointer

void swap3(int *a, int *b)

{

int temp = *b;

*b = *a;

*a = temp;

}

int main()
{

int a = 10, b = 20;

swap1(a,b);

 cout << “a = ” << a << “, ” << “b = ” << b << endl;
 swap2(a,b);

 cout << “a = ” << a << “, ” << “b = ” << b << endl;
 swap3(&a,&b);

 cout << “a = ” << a << “, ” << “b = ” << b << endl;
 return 0;

}

Pass By Reference Example
OUTPUT

a = 10, b = 20

a = 20, b = 10

a = 10, b = 20

In the above example,

Note: only variables can be passed by

reference. We cannot pass constants

like swap(2,3). Compiler generates

error message if constants are passed.

swap1() uses pass by value, i.e., it copies the values to the arguments of

function. So, ‘a’ and ‘b’ in the main() function and ‘a’ and ‘b’ inside swap1() are

different variables. Thus, in main() ‘a’ remains 10 and ‘b’ remains 20.

swap2() uses pass by reference using a reference variable. So swap2() uses

alias names to reference the variables in main(). ‘a’ is referenced as ‘a’ and ‘b’

is referenced as ‘b’ (they can be referenced by different names of course).

When ‘a’ and ‘b’ are swapped in swap2(),the change is reflected in main() too.

swap3() uses pass by reference using pointers. swap3() uses pointers to

directly access the address of the variables in main() and, hence, directly

swaps the values stored in the two memory locations.

FUNCTIONS
Return By Reference

In C++, a function can return a variable by reference.

Return by reference means a function is returning an alias of the variable in the

return statement so the variable which is being returned should have a scope

where the function is being invoked.

Normally, Global variables and a variable which is being passed by reference to

the function have a scope where the function is being invoked.

Return by reference allows value to be assigned to the variable returned i.e.

the function call can be used on the left side of the assignment operator to

assign any value.

Note: Scope of the variables should be carefully chosen. A local variable of a

function cannot be returned by referenced and generates an error. This is

because local variables has a scope within the function only and is destroyed

when function execution is completed. Thus, returning by reference will try to

reference a variable that does not exist causing the error.

Return By Reference Example
#include <iostream>

using namespace std;

int &max(int&, int&);

int main()

{

int a, b;

cout << "Enter the numbers: " << endl;

cin >> a >> b;

cout << "The values are " << a << " and " << b <<

endl;

cout << "The maximum value is " << max(a,b)

<< endl; max(a, b) = -1;

cout << "The values are " << a << " and " << b <<

endl;

return 0;

}

int &max(int& x, int& y)

{

return (x>y?x:y);

}

OUTPUT:

Enter the numbers: 34 45

The values are 34 and 45

The maximum value is 45

The values are 34 and -1

Multiple Choice
questions on

Functions in C++

1. An inline function is expanded during

a) compile-time
b) run-time
c) never expanded
d) end of the program

2. When we define the default values for a
function?

a) When a function is defined
b) When a function is declared
c) When the scope of the function is over
d) When a function is called

3. Where should default parameters appear in a
function prototype?

a) To the leftmost side of the parameter list
b) Anywhere inside the parameter list
c) To the rightmost side of the parameter list
d) Middle of the parameter list

4. Which is of the following is an example of
function overloading in C++?

a)int add(int a, int b)
b) float add(float a, float b)
c) void add(int a, int b)
d) All of the above

5. Which functions of a class are called inline
functions?

a) All the functions containing declared inside the
class
b) All functions defined inside or with the inline
keyword
c) All the functions accessing static members of
the class
d) All the functions that are defined outside the
class

6. Which of the following is an example of
function overloading?

a) int add(int x, int y) and
 float add(int x, int y, int z)
b) int add(int x, int y) and
 int add(int x, int y, int z)
c) int add(int x, int y) and
 int subtract(int x, int y, int z)
d) All of the above

7. What is the advantage of using an inline
function in C++?

a) It allows for recursion
b) It increases the performance of the program
c) It reduces the function call overhead
d) It reduces size of the program

8. In which of the following cases inline functions
may not word?

i) If the function has static variables.
ii) If the function has global and register
variables.
iii) If the function contains loops
iv) If the function is recursive
a) i, iv
b) iii, iv
c) ii, iii, iv
d) i, iii, iv

9. Which is more effective while calling the
functions?

a) call by value
b) call by reference
c) call by pointer
d) call by object

10. Which value will it take when both user and
default values are given?

a) user value
b) default value
c) custom value
d) defined value

11. What will be the output of the following C++
code?
 #include <iostream>
 using namespace std;
 int func(int m = 10, int n) {
 int c;
 c = m + n;
 return c;
 }
 int main() {
 cout << func(5);
 return 0;
 }
a) 15
b) 10
c) compile time error
d) 30

12. What will be the output of the following C++
code?
 #include <iostream>
 using namespace std;
 void copy (int& a, int& b, int& c) {
 a *= 2;
 b *= 2;
 c *= 2;
}
 int main () {
 int x = 1, y = 3, z = 7;
 copy (x, y, z);
 cout << "x =" << x << ", y =" << y << ", z =" << z;
 return 0;
 }
a) 2 5 10 c) 2 6 14
b) 2 4 5 d) 2 4 9

13. When should we use pass by reference in C++?

a) When we need to modify the original variable
in the calling function

b) When we don’t want the function to modify
the original variable in the calling function

c) When the variable is too large to copy
d) When we want to make the code harder to

read

14. Which of the following is true about pass-by-
reference in C++?

a) It can only be used with primitive data types
b) It is less efficient than pass-by-value
c) The original value of the passed variable is not

affected by the function
d) The reference must be explicitly dereferenced

within the function

15. What is the syntax for returning a reference in
C++?

a) int& func();
b) int func&()
c) int func();
d) &int func();

16. How a reference is different from a pointer?

a) A reference cannot be null
b) A reference once established cannot be
changed
c) The reference doesn’t need an explicit
dereferencing mechanism
d) All of the mentioned

C++ CLASSES
A Class is a group of similar objects and describes both characteristics(data

members) and behavior(member functions) of the object. Classes are user defined

data types that bind together data types and functions.

class class_name

{

//members of the class are defined here

};

Declaration of a class involves four attributes:

Tag name/Class name: the name by which the objects of the class are created

Data Members: the data types which makes up the class.

Member Functions/Methods: the function which operate on the data of the class.

Program Access Levels(private/public/protected): defines where the members of

class can be used

C++ CLASSES
A general class construct is show below:

class class_name

{

private: //private data members and member

functions

public: //public data members and member

functions

protected: // protected data members and

member functions

};

ACCESS SPECIFIERS

Access modifiers are used to implement an important aspect of Object-Oriented

Programming known as Data Hiding. Access Modifiers or Access Specifiers in a

class are used to assign the accessibility to the class members, i.e., they set some

restrictions on the class members so that they can’t be directly accessed by the

outside functions.

There are 3 types of access modifiers available in C++:

1. Public: All the class members declared under the public specifier will be

available to everyone. The data members and member functions declared as

public can be accessed by other classes and functions too. The public members

of a class can be accessed from anywhere in the program using the direct

member access operator (.) with the object of that class.

ACCESS SPECIFIERS

2. Private: The class members declared as private can be accessed only by the

member functions inside the class. They are not allowed to be accessed

directly by any object or function outside the class. Only the member functions

or the friend functions are allowed to access the private data members of the

class.

3. Protected: The protected access modifier is similar to the private access

modifier in the sense that it can’t be accessed outside of its class unless with the

help of a friend class. The difference is that the class members declared as

Protected can be accessed by any subclass (derived class) of that class as well.

OBJECTS AND THE MEMBER ACCESS
After the declaration of a class, memory is not allocated for the data member of

the class. The declaration of class develops a template but data members cannot

be manipulated unless an object of its types is created. Objects are the instances

of the class just as variables are instances of basic data types. An object is

declared like a normal variable, but using the class name as data type.

class_name o1, o2; // o1 and o2 are objects of class object

The data members and member functions(in public section) can be accessed just

like in structures using the dot(.) operator.

Eg:

o1.data; //accessing data member

o1.function(); //accessing member function

Note: if a pointer of the class is created -> operator is used instead of ‘.’

DEFINING MEMBER FUNCTIONS
Member functions are declared inside the class but may be defined inside a class

or outside the class.

Defining Member Function inside a class

A member function can be defined inside a class just like a normal function. A

member function defined inside a class is automatically inline.

Eg: class X

{

} ;

int a;

public:

void input(){

cout<< “Enter value of a: ”;

cin >> a;

}

DEFINING MEMBER FUNCTIONS
Defining Member Function outside a class

A member function can be defined outside a class using class name and scope

resolution operator (::) before the function name as shown in example below:

class X {

};

void X::input(){

int a;

void input(); // function declaration inside class

}

cout <<”Enter value of ‘a’:”;

cin >> a;

The scope resolution operator is used to specify the class to which the member

function belongs.

Multiple Choice
questions on Classes

in C++

1. What does a class in C++ holds?

a) data
b) functions
c) both data & functions
d) arrays

2. How many specifiers are present in access
specifiers in class?

a) 1
b) 2
c) 3
d) 4

3. Which of the following is a valid class
declaration?

a) class A { int x; };
b) class B { }
c) public class A { }
d) object A { int x; };

4. The data members and functions of a class in
C++ are by default ____________

a) protected
b) private
c) public
d) public & protected

5. Which operator a pointer object of a class uses
to access its data members and member
functions?

a) .
b) ->
c) :
d) ::

6. Which category of data type a class belongs
to?

a) Fundamental data type
b) Derived data type
c) User defined derived data type
d) Atomic data type

7. What is the syntax for calling a member
function of an object in C++?

a) object.member_function();
b) object->member_function();
c) Both A and B
d) None of the above

8. Which of the following is a valid syntax for
defining a member function outside of a class in
C++?

a) void MyClass::myFunction(){}
b) MyClass::void myFunction(){}
c) void myFunction()::MyClass{}
d) None of the above

9. What is the dot operator used for in C++?

a) To declare objects
b) To access a member of an object
c) To access a function of a class
d) To access a class variable

10. Which of the following keywords is used to
create an object of a class?

a) New
b) classname
c) Object
d) none

11. Can a member function be overloaded in C++?

a) Yes
b) No
c) It depends on the access specifier
d) None of the above

CONSTRUCTORS
A constructor is a special member function that can be used for the necessary

initialization of the data members of an object.

Some major points about constructors:

The constructor has the same as its class.

The constructor is automatically called at the time of object creation.

The constructor doesn’t have any return type not even “void” but it can take

arguments.

The constructors are always declared/defined inside the public section.

class class_name{
....

public:

class_name()

{

//constructor body definition

} } ;

Default constructor is the constructor with no parameter.

Output:

The value of a is 10

#include<iostream>

using namespace std;

class Example

{

int a;

public:

Example()

{ a = 10; }

void display()

{

 cout << “The value of a is ” << a <<endl;

}

};

int main()

{

Example e1;

e1.display();

return 0;

}

Default Constructor

The constructor function that can take arguments is called a parameterized

constructor.

#include<iostream>

using namespace std;

class Example

{

int a;

Example();

public:

Example(int c){

a = c;

Example e1;

cout << a <<endl;
}

Example:: Example()

{

a = 0;

}

int main()

{

Example e1; //since the default constructor is not

defined, it cannot be called

}

Example e2(10); //implicit call

Example e3 = Example(5); //explicit call

e2.display();
e3.display();

return 0; Output:
10
5

Parameterized constructor

}
void display()
{

};

It is a member function. It has the same name as the class name. It is invoked

automatically when the object of that class is created. This constructor has an

argument of an object of the same type or same class as a reference. It is used

for initializing an object of a class through another object of the same class.

Copy constructor

#include<iostream>

using namespace std;

class Example

{

int r, m;

public:

Example(){

cout << “Default constructor” << endl;

r = m = 0 ;

}

Example(int x, int y){

cout << “Parameterized constructor” << endl;

r = x; m = y;

 }

 Example(Example &T1)

 {

 cout << “Copy constructor” << endl;

 r = T1.r + 1; m = T1.m + 1;

 }

 void display()

 {

 cout << r << “ + ” << m << “i” << endl;

 }

};

Copy constructor
int main() {

Example e1;

Example e2(1, 2);

Example e4(e1); //implicit

Example e5 = e2; //explicit

e4.display();

e5.display();

e4 = e2; // this does not invoke the copy constructor

e4.display();

return 0;

}

Output:

Default constructor

Parameterized constructor

copy constructor

copy constructor

1 + 1i

2 + 3i

1 + 2i

Output:

10 + i20

C++ supports another method of initializing the class objects. This method is

known as the initialization list in the constructor function.

constructor(argument_list) : initialization section{

//body of constructor

}

Initialization List

#include<iostream>

using namespace std;

class complex

{

int imag;

int real;

public:

complex(int x, int y): real(x), imag(y){}

void display()

{ cout << real << “ + i” << imag << endl;}

};

int main()

{

complex c(10,20);

c.display();

return 0;

}

Note: In the initialization list, members are given value before the constructor

even starts to execute.

When using an initialization list to initialize objects, the members are initialized in

the order in which they are declared rather than in the order in which they are

placed in the Initialization list. Thus, using the data member declared later cannot

be used to initialize the members coming earlier. For example in previous

example,

complex(int x):real(imag),imag(x) {} // valid

complex(int x):real(x),imag(real) {} //invalid

Initialization List

Initialization list is generally used to

members. Let us consider the following

example

initialize constant and reference data

class ABC{

const int x = 10;

…

AND

}

;

class ABC{

}};

const int x;

int &y;

public:

ABC(int a, int &b){

x = a;

y = b;

Both the above classes produce errors. Constants and Reference data members must be

initialized when they are declared (their memory is allocated). The solution to this

problem is an initialization list. They can be initialized in the initialization list as:

ABC(int a,int &b): x(a),y(b){}

Initialization List

DESTRUCTORS
It is a member function. Ii has same name as a class named preceded by tilda(~).

It does not have any arguments and it does not have any return type(not even

void). It is invoked automatically when the object of that class goes out of the

scope or flushed from the memory.
#include<iostream>

using namespace std;

class demo

{

Output:

ID1 object created.

ID2 object created.

ID2 object destroyed.

ID1 object destroyed.

int id;

static int count;

public:

demo()

{

count++;

id = count;

cout << “\nID” << id << “ object created.”;

}

~demo()

{

cout << “\nID” << id << “ object destroyed.”;

} ;

}

int main()

{

demo d1, d2;

return 0;

}

int demo::count=0;

Multiple Choice
questions on

Constructor and
Destructor

1. What is the role of a constructor in classes?

a) To modify the data whenever required
b) To destroy an object
c) To initialize the data members of an object
when it is created
d) To call private functions from the outer world

6. What is a copy constructor?

a) A constructor that allows a user to move data
from one object to another
b) A constructor to initialize an object with the
values of another object
c) A constructor to check the whether to objects
are equal or not
d) A constructor to kill other copies of a given
object.

7. What happens if a user forgets to define a
constructor inside a class?

a) Error occurs
b) Segmentation fault
c) Objects are not created properly
d) Compiler provides a default constructor to
avoid faults/errors

8. How many parameters does a default
constructor require?
a) 1
b) 2
c) 0
d) 3

5. How constructors are different from other
member functions of the class?

a) Constructor has the same name as the class
itself
b) Constructors do not return anything
c) Constructors are automatically called when an
object is created
d) All of the mentioned

6. What is the role of destructors in Classes?

a) To modify the data whenever required
b) To destroy an object when the lifetime of an
object ends
c) To initialize the data members of an object
when it is created
d) To call private functions from the outer world

7. What is syntax of defining a destructor of class
A?
a) A(){}
b) ~A(){}
c) A::A(){}
d) ~A(){};

8. What is the difference between constructors
and destructors?

a) They have a different function name
b) Constructors does not have return type
whereas destructors do have
c) Constructors allow function parameters
whereas destructors do not
d) Constructors does not function parameters

9. Which of the following represents the correct
explicit call to a constructor of class A?
class A{
 int a;
 public:
 A(int i)
 {
 a = i;
 }
 }
a) A a(5);
b) A a;
c) A a = A(5);
d) A a = A();

10. Can a constructor be defined in the private
section in the class?

a) Yes
b) No
c) Depends on type of constructor
d) None of the above

11. How many destructors can a class have in
C++?

a) 1
b) 2
c) 0
d) 3

OBJECT AS FUNCTION ARGUMENT AND RETURN TYPE
Objects can also be passed as function argument or be returned by a function like

normal data type.

#include <iostream>

using namespace std;

class complex

{

public: int r, i;

void input()

{

cout << "Enter real part: ";

cin >> r;

cout << "Enter imaginary part: ";

cin >> i;

}
void display() {

cout << r << "+i" << i << endl;

}

complex add(complex x, complex y) {

complex t;

t.r = x.r + y.r; t.i = x.i + y.i;

return t;

}

};

int main() {

complex c1,c2,c3;

c1.input();

c2.input();

c3 = add(c1,c2);

cout << "The sum is: ";

c3.display();

return 0;

}

ARRAY OF OBJECTS
We know that an array can be of any data type including struct. Similarly, we can

also have an array of variables that are of type class. Such variables are called

array of objects.

 classname arrayname[arraysize];

The members can be accessed using the following syntax:

arrayname[index].datamember; //for data member

arrayname[index].function(); //for member functions

Consider the following class definition:

class employee{

 };

char name[20];

float age;

public:

void getdata();

void putdata();

employee e[4]; // create array of objects of size 4

The member functions can be accessed as:

e[i].name;

e[i].putdata ();

POINTERS TO OBJECTS AND MEMBER
ACCESS
Similar to pointer of other data type, we can also create pointer type of object of

class. This pointer holds the address of an object of the class. The general form of

declaring the pointer type of object is:

classname *Pointername;

Similar to the pointer type variable of structure, the pointer object to class uses

the arrow operator(->) to access the members of the class. The general form is

Pointerobject->member

Or,

(*Pointerobject).member

POINTERS TO OBJECTS AND MEMBER ACCESS
For instance, let us consider a class named kantipur having input() and display() as its

public member function, then.

kantipur k; //here k is a object of class kantipur

kantipur *p = &k; // p is a pointer that points to the object k;

Now, we can access input() and display() through pointer p as:

p->input();

p->display();

Or

(*p). input();

(*p).display();

DYNAMIC MEMORY ALLOCATION WITH
NEW AND DELETE

Allocation of memory during runtime is known as dynamic memory allocation(DMA).

C++ provides two operators for DMA new and delete.

New Operator:

C++ provides a new approach to obtaining blocks of memory using the new operator.

This operator obtains memory from the operating system and returns a pointer to

its starting point.

Delete Operator:

If our program reserves many chunks of memory using new, eventually all the

available memory will be reserved and the system will crash. To ensure safe and

efficient use of memory, the delete deallocates the memory pointed by the given

pointer.

DYNAMIC MEMORY ALLOCATION
WITH NEW AND DELETE

The general form of using new and delete is as follows:

datatype *pointervariable;

pointervariable = new datatype; //allocates single variable

pointervariable = new datatype[size]; //allocates an array of size elements

delete pointervariable; //if memory was allocated for a single variable

delete [] pointervariable; //alternatively when memory is allocated for an array

We can also initialize the the memory value using the new operator. This can be
done as follows:

pointer_var = new data_type(value);
For eg:

int *p = new int(25); //allocates the memory for int and initialises it to the value 25.
float *q = new float(7.5);

DYNAMIC MEMORY ALLOCATION
WITH NEW AND DELETE

Example:

#include<iostream>

#include<string.h>

using namespace std;

int main()

 {

char *str = “Kantipur Engineering College”;

int len = strlen(str);

char *ptr;

ptr = new char[len+1];

strcpy(ptr,str);

//get length of str

// make a pointer that points to char

// set aside memory: string + ‘\0’

// copy str to new memory area ptr

cout<<endl<<”ptr =”<<ptr; // show that str is now in ptr

delete ptr;

return 0;

}

OUTPUT:

 ptr = kantipur engineering college

ARRAY OF DYNAMIC MEMORY ALLOCATION
FOR OBJECTS AND OBJECT ARRAY

Similar to DMA of other datatypes, we can dynamically allocate memory for an

object or an array of objects.

classname *pointerobject;

pointerobject = new classname;

pointerobject = new classname[size];

For deallocation of memory:

delete [] pointerobject;

Let us consider we have class named “college”

college * ptr;

ptr = new college; //allocates memory dynamically for an object of class college

ptr = new college[5]; //allocates memory dynamically for 5 objects of class college

delete [] college;

THIS POINTER
“this” is a C++ keyword. “this” always refers to an object that has called the

member function currently. We can say that “this'' is a pointer that points to the

object for which this function was called. For example, the function call A.max()

will set the pointer “this” to the address of the object A.

#include<iostream>

using namespace std;

class test

{

Output:

X = 12;

0x16b31728c

*this.x = 12

this->x = 12

int x;

public:

};

test(int value)

{

x= value;

void test::print()

{

cout<<”X =”<<x<<endl;

cout<<this<<endl;

cout<<”(*this).x = ”<<(*this).x<<endl;

cout<<”this -> x = ”<< this -> x<<endl;

}

int main()

{

test t(12);

t.print();

}

}
void print();

STATIC DATA MEMBER AND STATIC FUNCTION

Since it is known that every object has its own copy of data members defined

by the class but that is not always true in case of static data members.

When a static data member is defined then only such an item is created for the

entire class regardless of number of objects and static data are shared by all

the objects.

These kinds of variables are declared inside class but initialized outside class.

Static data members are useful when sharing information that is common to all

objects of a class such as number of objects created etc.

STATIC DATA MEMBER AND STATIC FUNCTION

#include <iostream>

using namespace std;

class Counter

{

static int c;

public: void

display()

{

c++;

cout << "The call to display function " << c << endl;

}

int main()

{

counter C1, C2, C3;

C1.display();

C2.display();

C3.display(); return

0;

 }

Output:

The call to display function1

The call to display function2

The call to display function3

};
int Counter::c=0;

A member function which is defined as a static can access only static data

member and it can be invoked or called using name or object of that class.

Static Member Function

#include<iostream>

using namespace std;

class Counter

{

int a;

static int c;

public: void

input()

{

cout<<"\n Enter the value of a:";

cin>>a;

cout<<"\n Enter the value of c:";

cin>>c;

}

static void display()

{

cout<<"\nThe value of c is:"<<c<<endl;

} };

int Counter::c=0;

int main() {

Counter C1,C2,C3;

C1.input();

C2.input();

C3.input();

cout<<"\nThe value of variable c is:";

C1.display();

Counter::display();

C3.display();

}

Output

Enter the value of a:2
Enter the value of c:3

Enter the value of a:4
Enter the value of c:5

Enter the value of a:5
Enter the value of c:54

The value of variable c is:

The value of c is:54

The value of c is:54

The value of c is:54

CONSTANT MEMBER FUNCTIONS AND
CONSTANT OBJECTS

Constant member function is a function that can’t modify the data member

of a class but can use that data member. A member function is declared as a

constant member function using keyword const.

return_type function_name(parameters) const;

For example, void

large(int, int) const;

The qualifier const appears both in member function declaration and

definitions. Once a member function is declared as const, it cannot alter the

data values of the class. The compiler will generate an error message if such

functions try to alter the data values.

Constant Member Functions

#include<iostream>

#include<cmath>

using namespace std;

class Coordinate

{

int x; int y;

public:

void input()

{

};

cout << "Enter X and Y: ";

cin >> x >> y;

void Coordinate::display() const

{

float sum;

cout << "\nX Coordinate : " << x;

cout << "\nY Coordinate : " << y;

sum = sqrt(pow(x,2) + pow(y,2));

cout << "\nMagnitude : " << sum;

// x++ ; Error : Cannot change the value of

variable inside the constant member function

}

int main()

{

Coordinate C1;

C1.input();

C1.display();

return 0;

}

Constant Member Functions

Note: A constant member function of

a class can only invoke other

constant member functions of the

same class i.e. In above program, we

cannot call input() from display().

}
void display() const;

CONSTANT MEMBER FUNCTIONS AND
CONSTANT OBJECTS

Just like constant variables, a constant object is an object of a class that cannot

be modified. A constant object can call only const member functions because

they are the only ones that guarantee not to modify the object.

const class_name object_name(parameter);

or,

class_name const object_name(parameter);

The member of a constant object can be initialized only by a constructor, as a

part of the object creation procedure.

Constant Objects

Constant Objects
#include <iostream>

using namespace std;

class Coordinate {

int x;

int y;

public:

Coordinate(int a, int b) {

x = a;

y = b; }

void get_coordinate() {

cout << "Enter the xcoordinate:";

cin >> x;

cout << "Enter the ycoordinate:";

cin >> y;

}

void show_coordinate() const {

cout << "\nxcoordinate:" << x;

cout << "\nycoordinate:" << y;

}

void display() {

cout << "\nxcoordinate:" << x;

cout << "\nycoordinate:" << y;

}

};

 int main() {

Coordinate c1(0,0);

c1.get_coordinate();

c1.show_coordinate();

const Coordinate c2(10,20);

//c2.get_coordinate()

 //Invalid:get_coordinate() modifies the member of

Coordinate class

c2.show_coordinate();

//Valid: show_coordinate() is constant member

function

//c2.display();

//Invalid: constant object can only invoke constant

member function

}

return 0;

CONSTANT MEMBER FUNCTIONS AND
CONSTANT OBJECTS

Note: the const function changing the value of mutable data cannot have

statements that try to change the value of other ordinary data.

As discussed above, const objects can only invoke const member functions and

this const member functions cannot change the data member defined in a class.

However, a situation may arise when we want to create const object but we would

like to modify a particular data item only. In such situation, we can make it possible

by defining the data item as mutable.

mutable keyword

mutable keyword
void change_address(char *new_address) const {

address = new_address;

}

void display() const {

cout << "Name:" << name << endl; cout <<

"Address:" << address << endl; }

};

#include <iostream>

using namespace std;

class Student

{

char *name;

mutable char *address;

public:

Student(char *n, char *ad) { int main()

{

const Student s1("ABC","PlanetEarth");

//s1.change_name("XYZ");

name = n;

address = ad

}

void change_name(char *new_name)

{

s1.change_address("Nepal");

s1.display();

return 0;

}

name = new_name;

}

Multiple Choice
questions on This
pointer, const and

static member

1. Which is the pointer which denotes the object
calling the member function?

a) Variable pointer
b) This pointer
c) Null pointer
d) Zero pointer

2. The this pointer is accessible __________________

a) Within all the member functions of the class
b) Only within functions returning void
c) Only within non-static functions
d) Within the member functions with zero
arguments

3. What is the this pointer in C++?

a) A pointer to the current object
b) b) A pointer to the base class
c) c) A pointer to the derived class
d) d) A pointer to the first data member of the

class

4. What is the type of the this pointer in a class
named MyClass?

a) MyClass*
b) b) MyClass&
c) c) MyClass**
d) d) MyClass

5. In which of the following scenarios is the this
pointer most useful?

a) When overloading the + operator
b) When using static member functions
c) When differentiating between member

variables and parameters with the same name
d) When creating a new instance of a class

6. Which of the following statements about the
this pointer is incorrect?
a) The this pointer can be used to return the
current object from a member function.
b) The this pointer can be NULL.
c) The this pointer is a constant pointer.
d) The this pointer is automatically passed to all
non-static member functions.

7. What is a static data member in C++?
a) A data member that can only be accessed by

the first object of a class
b) A data member that is shared among all
objects of a class
c) A data member that is unique to each object of
a class
d) A data member that cannot be modified

8. How can a static data member be accessed?

a) Only through an object of the class
b) Only through a pointer to the class
c) Through both the class name and an object of
the class
d) Only through the this pointer

9. What is the correct way to define a static data
member outside the class?

a) static int MyClass::count = 0;
b) int MyClass::count = 0;
c) MyClass::count = 0;
d) static MyClass::count = 0;

10. When is the memory for a static data member
allocated?

a) When an object of the class is created
b) When the first static member function is called
c) When the class is first loaded
d) When the static data member is first accessed

11. Where is a static data member of a class
typically stored?

a) In the stack
b) In the heap
c) In the global data segment
d) In the code segment

12. What is the default value of a static data
member if it is not explicitly initialized?

a) 0
b) NULL
c) Undefined
d) Compiler-dependent

13. What is a const member function in C++?

a) A function that can only be called on const
objects

b) A function that cannot modify any member
variables of the class
c) A function that cannot be inherited
d) A function that cannot return a value

14. How do you declare a member function as
const in C++?
a) By placing the keyword const before the

function name
b) By placing the keyword const after the
function name and parameter list
c) By placing the keyword const before the return
type
d) By placing the keyword const after the class
name

15. Which of the following correctly declares a
const member function in a class named
Example?
a) void Example() const;
b) void const Example();
c) void Example() const
d) const void Example();

16. Which of the following is true about const
member functions?

a) They can call non-const member functions of
the same class
b) They cannot modify global variables
c) They can modify mutable member variables
d) They cannot return a valueAnswer:

FRIEND FUNCTION AND FRIEND CLASSES

As we know, the private members of a class can be accessed only through

the public section of the same class. But, if we want to give access to the

private member to the function outside the class, we can use the concept of

friend function in such circumstances.

A friend function is a function that is not a member of a class but has access

to the class’s private and protected members.

Some important points about the friend functions are:

A friend function cannot be called using the object of the class. They are called

like a normal function.

A friend function can access the resources of a class using the object of the

same class.

Usually, a friend function has an object as its argument.

Friend declaration can be placed anywhere in the class and the access

specifier does not matter.

Friend Function

FRIEND FUNCTION AND FRIEND CLASSES

Syntax: class class_name

{…

friend return_type function_name(arguments);

};

return_type function_name(arguments) {

// body of the function

}

Example:

class demo

{

Friend Function

int a;

float b;

public:

void input() {

}

friend void output(demo);

};

void output(demo d)

{

cout<<“Enter the value of a and b”;

cin>> a >> b ;

cout<<“The values of a and b are : ”<< d.a <<

endl<< d.b;

}

int main()

{

demo d1;

d1.input();

output(d1);

return 0;

}

FRIEND FUNCTION AND FRIEND CLASSES
Friend Function

WAP to make global function which returns the average of 10 number list stored at a member class

#include <iostream>
using namespace std;

const unsigned int SIZE = 10;
class Num

{

float average(Num n1)
{

int main()
{

float sum=0.0;
for(int i=0; i<SIZE; i++)

{

Num n1;
float avg;

n1.input();
avg = average(n1);

cout << avg ;
return 0;

int n[SIZE];

public:

sum += n1.n[i];

}

}

 }

void input()

{

return sum/SIZE;

cout << "Enter the elements:";

for(int i=0; i<SIZE; i++)
cin >> n[i];

};

}
friend float average(Num);

FRIEND FUNCTION AND FRIEND CLASSES

Friend functions can be used as a bridge between two classes. It can be used to

access the private and protected members of two or more classes. This can be

accomplished by declaring the same function as the friend of the classes it is

required to link

Friend as a bridge function

Friend as a bridge function
WAP to swap the private data of two different class

#include <iostream>
using namespace std;

class ObjB;
class ObjA {

class ObjB {

int a;

public:
void input(){

int x;
public:

cout << "Enter value of a: ";
cin >> a;

 void input(){ }
void display()

{ cout << "a : " << a << endl; }

cout << "Enter value of x: ";

cin >> x;
friend void swap(ObjA&, ObjB&);
};

}

void display(){
cout << "X : " << x << endl; void swap(ObjA& a, ObjB& b){

} int tmp = a.x;
a.x = b.a;

b.a = tmp; };

friend void swap(ObjA&, ObjB&);

}

main() {

ObjA a1;

ObjB b1;

a1.input();

b1.input();

swap(a1, b1);

a1.display();

b1.display();

return 0;

}

Output: Enter

value of x: 1

Enter value of a: 2

X : 2 a : 1

FRIEND FUNCTION AND FRIEND CLASSES

The member functions of a class can be friend functions of another class. In

such case, their declaration as a friend in another class uses their qualified

name (full name).

Friend function of a class as a friend of another

Friend function of a class as a friend of another
WAP to make a mult() function of class A as a friend of B and display the proper output

#include <iostream>
 using namespace std;

class Beta;
class Alpha
{

int x;
public:

void input()
{

cout << "Enter the value of x :";
cin >> x ;

}
void mult(Beta);

 };

class Beta {
int y;

public:
void input(){

int main()

{
Alpha a;

Beta b;
a.input();cout << "Enter the value of y:";

cin >> y;
b.input();

}
friend void Alpha::mult(Beta);

};
void Alpha::mult(Beta t)
{

cout << x << "*" << t.y << "=" << x*t.y << endl;
}

a.mult(b);

return 0;

}

Output: Enter the

value of x :1 Enter the

value of y: 2 1*2=2

FRIEND FUNCTION AND FRIEND CLASSES

There may be a situation when all the member functions of a class have to be

declared as friend of another class. In such situations, instead of making the functions

friend separately, we can make the whole class a friend of another class. A friend

class is a class whose member functions can access another class’s private and

protected members. This can be specified as follows:

class x;

class z

{

........

};

friend class x; //all member functions of class x are friends to z.

Friend Class

Friend Class
#include <iostream>

using namespace std;

class ABC;

class XYZ

{

int x;

public:

friend class ABC;

 };

class ABC

{

int a;

public:

 void getdata(XYZ &o1)

{

cout << "Enter the value of a:";

cin >> a;

cout << "Enter the value of x:";

cin >> o1.x;

}

void sum(XYZ &o1)

{

 cout << "The sum is:" << a+o1.x << endl;

}

void product(XYZ &o1)

{

cout << "The product is:" << a * o1.x << endl;

}

};

int main()

{

ABC obj1; XYZ obj2;

obj1.getdata(obj2);

obj1.sum(obj2);

obj1.product(obj2);

return 0;

}

Output:

Enter the value of a:2

Enter the value of x:1

The sum is:3

The product is:2

Multiple Choice
questions on Friend
Function and Friend

Class

1. What is a friend function in C++?

a) A function which can access all the private,
protected and public members of a class
b) A function which is not allowed to access any
member of any class
c) A function which is allowed to access public and
protected members of a class
d) A function which is allowed to access only public
members of a class

2. How many member functions are there in this
C++ class excluding constructors and destructors?
class Box
{
 int capacity;
 public:
 void print();
 friend void show();
 bool compare();
 friend bool lost();
};
a) 1 c) 3
b) 2 d) 4

3. Pick the correct statement.

a) Friend functions are in the scope of a class
b) Friend functions can be called using class
objects
c) Friend functions can be invoked as a normal
function
d) Friend functions can access only protected
members not the private members

4. How is a friend function declared in C++?

a) Using the keyword friend followed by function
prototype

b) Using the keyword friend before the function
prototype

c) Using the keyword friend after the function
prototype

d) None

5. What will be the output of the
following C++ code?

 #include <iostream>
 using namespace std;
 class sample
 {
 private:
 int a, b;
 public:
 void test()
 {
 a = 100;
 b = 200;
 }
 friend int compute(sample e1);
 };

int compute(sample e1)
 {
 return int(e1.a + e1.b) - 5;
 }
 int main()
 {
 sample e;
 e.test();
 cout << compute(e);
 return 0;
 }

a) 100
b) 200
c) 300
d) 295

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

