
Character Sets

C character sets consists of upper and lowercase alphabets, digits, special character as
and white spaces
The alphabets and digits altogether are called as the alphanumeric character

Alphabets : a-z, A-Z
Digits: 0-9
Special Characters: period, comma, semicolon, colon, number sign(#), apostrophe,
double quotes, exclamation, tilde(~), underscore, dollar, asterisk, ampersand, caret,
slash(/), backslash(\) and many more
White space characters: Space, newline \n, horizontal tab \t, carriage return \r and form
feed \f

1.
2.
3.

4.

Tokens in C

Keywords

C keeps a small set of words(32 words) for its own use, these words are keywords
predefined, reserved words used in programming that have special meanings to the
compiler
keywords are a part of the syntax

Keyword rules
keywords are always in lowercase letters
keywords cannot be changed by a programmer
keywords cannot be used as variables, function name, array name by a programmer

a.
b.
c.

Keywords in uppercase letters can be used as identifiers but is considered as poor programming practice

example. int, float, short, long, double, struct, unsigned, sizeof, while, for, default, if, else,
return, continue, break, void, goto, etc.

Identifiers

names given to entities such as variables, functions, structures, etc.
identifiers must be unique
created to identify entities during execution of the program

Rules for naming identifiers
identifiers can have alphabets, digits and underscore, but $,#,... etc cannot be used
first letter must be an alphabet or underscore
you cannot use keywords as identifiers
there is no rule on how long an identifier can be but some compilers may run into problems
with identifiers longer than 31 characters
blank space should not be used in an identifier, eg. 'student name' is not valid, 'student_name'
should be used

a.
b.
c.
d.

e.

C Data types

used to define the kind of data being stored or manipulated
specifies the values that a variables or constants can hold and how the information is
stored in the memory
C supports three classes of data types:

Primary/Fundamental data types
Derived data types
User defined data types

a.
b.
c.

Qualifiers
modifies the behavior of the variable type to which they are applied
there are four types of qualifiers:

size qualifiers:
alters the size of basic data types
the keywords long and short are two size qualifiers

sign qualifiers:
specify whether a variable can hold both positive and negative numbers or only positive
numbers
the keywords signed and unsigned are two sign qualifiers

const:
an object declared to be const can't be modified(assigned to, incremented or decremented) by
a program
const variable can be declared as const int a = 100; or int const a = 100;

volatile
a variable should be declared volatile whenever its value can be changed by some external
sources from outside the program
volatile variable can be declared as volatile int a = 100; or int volatile a = 100;

a.

b.

c.

d.

a. Primary/Fundamental data types
the data types which are predefined in the language and can be directly used to declare variable in C
primary data type can be categorized as follows:

Integer type
signed integer type

int
short int
long int

unsigned integer type
unsigned int
unsigned short int
unsigned long int

Character type
signed char
unsigned char

Floating point type
float
double
long double

1.
a.

i.
ii.
iii.

b.
i.
ii.
iii.

2.
a.
b.

3.
a.
b.
c.

int - integer: A real number without a fraction. Ex 1,2,3 but not 1.5, 2.4, 3.14
to declare an int, you can use instruction:

float - floating point: A number with a fractional part. Ex 1.0, 1.5, 3.14, etc
to declare a float, you use the instruction:

double: A double-precision floating point value
to declare an double, you can use instruction:

char: A single character. Ex. all characters defined in character sets
to declare a character, you can use instruction:

void: Along with all the above types, there is another type. void type means a variable has no value.
This is usually used in functions which return nothing.

int variable _name;
int a; declares an int(integer) variable called a

float variable_name;
float a; declares a float variable called a

double variable_name;
double a; declares a double float variable called a

char variable_name;
char a; declares a character variable called a

Size and range of data types

c. User defined data types

b. Derived data types

i) Functions
ii) Arrays
iii) Pointers

C provides a feature to define new data types according to user's requirement
The ways of defining user defined data types are:

Structure
Union
Enumeration

a.
b.
c.

Preprocessor directives
Preprocessor directives are always started with Hash symbol(#)
These preprocessors directives are used to add Header files to the program
The main thing is preprocessor directives are used to include files to our programs
Commonly used Preprocessor Directives are #include and #define
#include is used for including files may be header files or normal files
#define is used to define symbolic constants and macros
All types of preprocessor directives are as follows:

#define
#include
#ifdef
#under
#ifunder
#if

1.
2.
3.
4.
5.
6.

7. #else
8. #elif
9. #endif
10. #error
11. #pragma

#define (Macros)1.

A macro is a fragment of code which has been given a name.
Whenever the name is used, it is replaced by the contents of the macro

There are two types of macros:
Function - like macros

Example. #define MAX(a,b) ((a) > (b) ? (a) : (b))
Object - like macros

Example. #define PI 3.1415
#define vs typedef

Syntax
#define token value

Example. #define MY_TYPE int
typedef int My_Type

2. #include

It has two variants which replace the code with the current source files code
two variants are as follows:

i) #include<file> : searches for a file in the defined list of the system or directories as
specified
ii) #include"file" : used for your own customized header files of the program

constant is an identifier that is always associated with the same data value
when you declare a constant, the value cannot be changed
constants are also called literals
constants can be any of the data types
it is considered best practice to define constants using only UPPERCASE names
Syntax: const type constant_name
Eg. const int SIDE = 4;

Constants

Constants are categorized into two basic types, and each of these types has its
subcategories. They are:

Numeric Constants
Integer Constants
Real Constants

Character Constants
Single Character Constants
String Constants

a.

b.

Integer Constants
It's refering to a sequence of digits. Integers are of three types:

Decimal Integer
Octal Integer
Hexadecimal Integer

a.
b.
c.

Examples:15,-265,0,99818,0X6

Real Constants

The numbers containing fractional parts like 99.25 are called real or floating points
constant.

Single Character Constant
It simply contains a single character enclosed within a pair of single quote
It is to be noted that the character '8' is not the same as 8
Character constants have a specific set of integer values known as ASCII values(American
Standard Code for Information Interchange)
Examples:'X','5',';'

String Constants

These are a sequence of characters enclosed in double quotes and they may include
letters, digits, special characters, and blank spaces.
It is again to be noted that "G" and 'G' are different because "G" represents a string as it
enclosed within a pair of double quotes whereas 'G' represents a single character.
Examples:"Hello","2015","2+1"

Variables
symbolic names which is used to store different types of data in the computer's
memory
when the user gives the value to the variable, that value is stored at the same location
occupied by the variable
variables may be of integer, character, string or floating type

Before you can use a variable you have to declare it. To declare a variable, user should
state its type and give its name
To declare a variable in C, do

<data_type> <list_variables>;
Examples

int a;
float a,b,c;

An operator is defined as a symbol that specifies the mathematical, logical or relational
operation to be performed.
The data items that operators act upon are called operands.

An expression is a combination of variables, constants and operators written according
to the syntax of C language.
In C, every expression evaluate to a value i.e. every expression result in some value of a
certain type that can be assigned to a variable.

 expression x = a + b / c - 2

 Algebraic expression: 3x^2 + 2x +1
 C expression: 3*x*x + 2*x +1

Operators

Types of operators

Unary operators are the operators in C which are used to perform certain operation on
single operand.
They are named unary because they work on only one operand.
Some of the unary operators are ++, --, -, !, etc.

Binary operators are those operators that operate on two operands.
Examples: +, -, *, /, <, >, etc.

A. Based on number of operands they act upon, C operators are classified as follows:
 1) Unary Operators
 2) Binary Operators
 3) Ternary Operators

1) Unary Operators:

2) Binary operators:

Ternary Operator is the operator which acts upon three operands.
Conditional operator(?:) is the only example of ternary operator.
The conditional operators is similar to if-else statement but it takes less space and
helps to write if-else statements in the shortest way possible.
The conditional operator is of the form:

It can be visualized into if-else statement as:

3) Ternary Operators:

 variable = expression1 ? expression2 : expression3;

 if(expression1)
 {
 variable = expression2;
 }
 else
 {
 variable = expression3;
 }

Arithmetic Operators are those operators that perform different arithmetic operations
such as addition, subtraction, multiplication, division etc
Examples: +, - , *, /, %
Modulo Division operation is performed by % operator (also known as remainder
operator).

B. Based on utility and action, C operators are classified as follows:

 1) Arithmetic Operators (+, -, *, /, %)
 2) Relational Operators (>, <, <=, >=, ==, !=)
 3) Logical Operators (&&, ||, !)
 4) Assignment Operators (=)
 5) Conditional Operators (?:)
 6) Increment/ Decrement operators (++/--)

 1) Arithmetic Operators

Relational Operators are used to compare two similar operands, and depending on
their relation, take some actions.
They compare their left hand side operand with their right hand side operand for
different relations.
The value of relational expression is either 1(if the condition is true) or 0(if the condition
is false).
Different relational operators in C are >, <, <=, >=, == (read equals to) and != (read not
equals to)

Logical operators are used to compare or evaluate logical and relational expressions.
The final result produced by this operator is also either 1(True) or 0(False).
The three logical operators in C are:

2) Relational Operators:

 For example: if a = 5 and b = 6, then the expression (a>b) results 0(false).

3) Logical Operators:

 a) && logical AND

It is a binary Operator that assigns the result of an expression in right hand side to a
variable in left hand side.
syntax: variable = expression;
If a=5, b=6 the c = a+b means the value of a+b (i.e. 11) is assogned to c. Also 5 is assigned
to a and 6 is assigned to b.

It is a ternary operator thet is used to write conditional structures in a single expression.

Increment operators are used to increase the value of the variable by 1 and and
decrement variable are used to decrease the value of the variable by 1

 b) || logical OR
 c) ! logical NOT
For example: If a=5, b=6, c=3, then the expression (a<b)&&(a>c) results 1(true).

4) Assignment Operator (=) :

5) Conditional Operator (?:) :

6) Increment and Decrement Operator:

Both increment and decremenrt operator are used on a single operand or variable.
There are two types of increment operators:

 a) pre-increment
 b) post-increment

In pre-increment, first increment the value
of variable and then used inside the
expression.
syntax: ++variable;
Example:

a) Pre-increment:

 #include<stdio.h>
 #incluse<conio.h>
 void main()
 {
 int x, i;
 i = 10;

 x = ++i;
 printf("x: %d", x);
 printf("i: %d", i);
 getch();
}

output:
x: 11
i: 11
In above program first increase the value of i
and then assign value of i into expression.

In post-increment, first the value of variable is used in the expression and then
increment the value of the variable.
syntax: variable++;
Example:

b) Post-increment:

#include<stdio.h>
#incluse<conio.h>
 void main()
 {

 int x, i;
 i = 10;
 x = i++;
 printf("x: %d", x);
 printf("i: %d", i);
 getch();
}

output:
x: 10
i: 11

In above program first assign the value of i into
expression then increase value of i by 1. Similarly
it can be done same for the decrement operator.

Precedence and Associativity of operators
If more than one operators are involved in an expression then, C language has
predefined rule of priority of operators. This rule of priority of operators is called
operator precedence.
In C, precedence of arithmetic operators (*, %, /, +, -) is higher than relational operators
(==, !=, >, <, <=, >=) and precedence of relational operators is higher than logical
operators (&&, || and !).

Precedence of operators:

Associativity indicates in which order two operators of same priority (precedence)
executes.
let's consider an expression,

Here, operators == and != have same precedence.
The associativity of both == and != is left to right, i.e. the expression in left is executed
first and execution take place towards right.

Associativity of Operators:

 a == b != c

Input and Ouput

Input means to provide the program with some data to be used in the program
and output means to display data on screen or write the data to a printer or a file.
C Programming language provides many built-in functions to read any given input
and to display data on screen when there is a need to output the result.
All these built-in functions are present in header files.

INTRODUCTION

Program

Standard Input
(Keyboard)

Standard Error
(screen)

Standard Output
(screen)

Types of Input/output
There are two types of input/output statements:

Formatted input/output.
Unformatted input/output.

printf() - formatted output function used to display messages and values on a screen.
Syntax - printf(" control string", arg1,arg2,.......);

a.
b.

a. Formatted input/output

where, control string may contain only messages to display or with format specifier
of individual output data items arg1, arg2,..... to be displayed.

Example: void main()
{

int a=5;
printf("\n Value of a = %d", a);

}

scanf() - formatted input function used to read values from keyboard i.e. to give input.
syntax: scanf("control string", &arg1, &arg2,.......);
where, control string specifies the type and format of the data that has to be
obtained from keyboard and stored in the memory locations &arg1, &arg2,......

Example:
void main()
{

int a;
scanf("%d", &a);
printf("Entered value is %d",a);

}

ILLUSTRATIONS:
Formatted I/O for numeric integer data:

 Formatted output
1.

a.
General form: %<flags> wd
where, w is the field width and flags represent some characters(-, 0, +-, etc.) that are
used to change the appearance of output.
Example:
void main()
{

int a = 12345;
printf("\n Case 1: %d", a); // w not specified
printf("\n Case 2: %15d", a);
printf("\n Case 3: %-15d", a);
printf("\n Case 4: %015d", a);
printf("\n Case 5: %3d", a); // w less than width of data to print

}

OUTPUT:
case 1 : 12345
case 2 :12345
case 3 : 12345..........
case 4 : 000000000012345
case 5 : 12345

b. Formatted input
general form: %wd
where w is field width.
example:
void main()
{

int a, b;
scanf("%3d %4d'", &a, &b);
printf("\n a = %d \n b = %d", a, b);

}

OUTPUT 1:
12 1234
a = 12
b = 1234

OUTPUT 2:
12345 6789
a = 123
b = 45

2. Formatted Real Numbers:
For printing real numbers we use printf function and general form format specifier is :

%<flags>w.pf
where, w is the field width and P specifies the number of digits to the right of the
decimal point of a real number to be printed.

EXAMPLE:
void main()
{

float a = 76.972563076;
printf("\n case 1: %f", a);
printf("\n case 2: %10f", a);
printf("\n case 3: % 10.2f", a);
printf("\n case 4: % -10.2f", a);
printf("\n case 5: % e", a);

}

Output:
case 1: 76.972563
case 2: .76.972563
case 3:76.97
case 4: 76.97.....
case 5: 7.697256e+01

For inputting real numbers we use scanf function as,
scanf("%f", &float_var);
e.g. scanf("%f", &a);

3. Formatted Character I/O:
For printing character we use printf function and general form format specifier is :

%<flags>wc
where, w is the field width of w column with right justification. e.g:
void main()
{
char ch = 'C';
printf("\n case 1: %c", ch);
printf('\n case 2: %5c", ch);
printf("\n case3: % -5c", ch);
}

OUTPUT:
case 1: C
case 2:C
case 3: C....

For inputting character we use scanf function as,
scanf("%c", &char_var);
e.g. scanf("%c", &ch);

4. Formatted I/O string data:
The formatted input string data has the specifications as below:

 %ws
The formatted output string data has the specification as below

%w.ps
where w specifies the field for display and p instructs that only first p characters of the
string are to be displayed. The display is right-justified.
Example:
void main()
{

char a[10] = "Kantipur";
printf("\n case 1: %s", a);
printf("\n case 2: %15.4s", a);

printf("\n case 3: %-15.6s", a);
}
OUTPUT:
 case 1: Kantipur
case 2:Kant
case 3: Kantip.........

b. Unformatted input/output
Character I/O:

Input Functions:
1.

getchar() - reads a single character from user
syntax: character_variable = getchar();
e.g. void main()
{

char ch;

printf("\n Enter a character");
ch = getchar();
printf("\n Entered character is : %c", ch);

}

For reading characters we can also use getch() and getche() functions.
syntax: character_variable = getche();
 character_variable = getch();
e.g. ch = getche();

ch = getch();

getche() - reads a character from console and echoes to the screen. It allows a
character to be entered without having to press the 'Enter' key afterwards.
Syntax - ch = getche();
where, ch is any character type variable.

e.g. void main()
{

char ch;
printf("enter any character: ");
ch = getche();
printf("entered character is %c", ch);

}

output: enter any character: B

 entered character is B

getch() - reads a character from console but doesn't echo to the screen. It allows a
character to be entered without having to press the Enterkey afterwards.
syntax - ch = getch();
where, ch is any character type variable.

e.g. void main()
{

char ch;
printf("enter any character: ");
ch = getch();
printf("entered character is %c", ch);
}

output: enter any character: B
 entered character is B
// Here, the entered character B is not echoed to the screen.

Difference between getchar(), getch() and getche():
getchar() - wait for a character followed by the Enter key.
getch() - waits for a character and doesn't echo to the screen.
getche() - waits for a character and echoes to screen.

char ch;
printf("\n Enter a character");
ch = getchar();
printf("\n Entered character is :");
putchar(ch);

}

Output Functions:
putchar()
It is an unformatted output statement for printing a character.
syntax - putchar(ch);
where, ch is any character variable.
For printing a character we can also use putch();
syntax - putchar(character_variable)
e.g. void main()
{

2. String I/O
i. input function

ii. Output function
puts() - It displays the string stored in string variable.
syntax - puts(string_variable)
e.g. void main()
{

char str[20];
printf("\n Enter a string");
gets(str);
printf("\n Enteres string is: ");
puts(str);

}

gets() - It is an unformatted input function for reading
strings.syntax() - gets(str);
where 'str' is any string variable.

Control

Statements

Free Hand

FreeText
Prepared by

FreeText
Kabin Devkota
Udita Bista

Introduction
The basic components of high level programming language such as C are its control
structures.
The structures which regulates the order in which program statements are executed
are called control structures.
The format of programming should be such that it is easy to trace the flow of execution
of statements. This would help not only in debugging but also in the review and
maintenance of the program later.
One method of achieving the objective of an accurate error resistant and maintainable
code is to use one or any combination of the following three control structure available
in programming:

Sequential Structure(Straight-line flow)
Selective Structure(Branching)
Repetitive structure(Loop or iteration)

1.
2.
3.

Sequential Structures
Sequence simply means executing one instruction after another, in the order in
which they occur in the source file.

Selection means executing different sections of code de[pending on a condition or
the value of a variable, this is what allows a program to take different courses of
action depending on different circumstances

Repetition means executing the same section of code more than once.
A section of code may either be executed a fixed number of times, or while some
condition is true

Selective/Conditional Structures

Repetitive Structures (Loops)

Conditional Structure

Conditional statements help you to make a decision based on certain conditions.
These conditions are specified be a set of conditional statements having boolean
expressions which are evaluated to a boolean value true or false.
There are following types of conditional statements in C

 If Statement
 If-else Statement
 Nested if-else Statement
 If-else-if ladder
 Switch Statement

a.
b.
c.
d.
e.

The single if statement in C language is used to execute the code if a condition is true.
It is also called one way selection statement.

a. If Statement

Syntax:
if(condition)
{

statement(s);
}

Flowchart:

How "if" statement works?
If the condition is evaluated to non-zero(true) then if-block statements are
executed
If the condition is evaluated to zero(false) then control passes to the next
statement following it

EXAMPLE:
#include<stdio.h>
#include<conio.h>
void main()
{

int n;
printf("enter a number");
scanf("%d",&n);

if(n % 2 == 0)
{

printf("%d is even",n);
}
getch();

}

The if...else statement in C language is used to execute the code if a condition is true or
false.
It is also called two way selection statement.

b. If...else Statement

Syntax:
if(condition)
{

statement(s);
}
else
{

statement(s);
}

Flowchart:

How "if...else" statement works?
If the condition is evaluated to non-zero(true) then if-block statements are
executed
If the condition is evaluated to zero(false) then else block statements are
executed
EXAMPLE:
#include<stdio.h>
#include<conio.h>
void main()
{

int n;
printf("enter a number");
scanf("%d", &n);

if(n % 2 == 0)
{

printf("%d is even", n);
}
else
{

printf("%d is odd", n);
}
getch();

}

The nested if...else statement is used when a program requires more than one test
expressions. It is also called a multi-way selection statement.
When a series of the decision are involved in a statement, we use if else statement in
nested form.
Syntax:
if(condition1)
{

if (condition2)
{

statement1;
}
else
{

statement2;
}

3. Nested if...else statement

}
else
{

statement3;
}

EXAMPLE:
#include<stdio.h>
#include<conio.h>
void main()
{

int a, b, c;
printf("Please Enter 3 numbers");
scanf("%d %d %d",&a, &b, &c);
if(a>b)
{

if(a>c)
{

printf("a is the greatest");
}
else
{

printf("c is the greatest");

}
}
else
{

if(b>c)
{

printf(" b is the greatest");
}
else
{

printf("c is the greatest");
}

}
getch();

}

4. if...else if ladder
The if...else if statement is used to execute one code from multiple conditions. It is also
called multipath decision statement.
It is a chain of if...else statements in which each if statemnt is associated with else if
statement and last would be an else statement.
Syntax:
if(condition1)

statement1;
else if(condition2);

statement2;
else if(condition3)

statement;
.
.

else
default_statement;

5. Switch statement
In multiway decision making program, when the
number of alternatives increases, the complexity of
such program increases dramatically.
C has a built-in multiway decision statement known
as "switch" which tests the value of a given variable
(or expression) against a list of case values, and
when a match is found, a block of statements
associated with that case is executed.

Syntax:
switch (expression)
{

case value-1:
block-1;
break;

case value-2:
block-2;
break;

.

.

.
default:

default-block;
break;

}

case 4:
printf("Wednesday")
break;

case 5:
printf("Thursday");
break;

case 6:
printf("Friday");
break;

case 7:
printf("Saturday")
break;

default:
printf("Enter valid number(1 to 7)");
break;

}
getch();

}

#include<stdio.h>
void main()
{

int n;
printf("Enter any no. from 1 to 7");
scanf("%d", &n);
switch (n)
{

case 1:
printf("Sunday");
break;

case 2:
printf("Monday");
break;

case 3:
printf("Tuesday");
break;

Program to display the corresponding days of a week according to the numbers entered
from 1 to 7

When the switch is executed, the value of the expression is successfully compared against the
values: value1, value2,.....
If a case is found whose value matches with the value of the expression, then only the block
of statements that follows the case are executed.
For example, consider the program to display the corresponding days of a week according to
the numbers entered from 1 to 7.
The break statements must be used at the end of each case block if it were not used, then all
the cases from the one met will be executed. For example, if the value switch expression
matches with that of case constant2, then all the statements in case statement2 as well as
rest of the cases including default will be executed.
The break statement tells the compiler to jump out of the switch case statement and execute
the statement following the switch case construct.
Default is also a case that is executed when the value of the switch expression does not
match with any of the values of the case statements.
Although the default case is optional, it is always recommended to include it as it handles any
unexpected cases.

Repetitive Structure
Repetitive structures, or loops, are used when a program needs to repeatedly process
one or more instructions until some condition is met, at which time the loop ends.
The process of performing the same task over and over again is called iteration, and C
provides built-in iteration functionality.
A loop executes the same section of program code over and over again, as long as a
loop condition of some sort is met with each iteration.
This section of code can be a single statement or a block of statements(a compound
statement).
There are three looping structures in C:

 for loop
do......while loop
while loop

a.
b.
c.

It is a count controlled loop which is used when some statement is to be repeated certain
number of times.

a. for loop

Syntax:
for(initialization; condition; update)
{

body of loop; //statement(s) to be executed repeatedly
}

How "for" statement works?
The initialization statement is executed only once
Then, the test expression is evaluated. If the test expresion is evaluated to false, the for loop is
terminated.
However, if the test expression is evaluated to true, statements inside the body of for loop are executed,
and the update expression is updated.
Again the test expression is evaluated

This process goes on until the test expression is false. When the test expression is false, the loop terminates

EXAMPLE:
#include<stdio.h>
void main()
{

int i;
for(i = 1; i<=10; i++)
{

printf("%d",i);
}

}

Output:
1 2 3 4 5 6 7 8 9 10

Flowchart:

"do-while loop" is exit-controlled loop(condition controlled) in which test condition is
evaluated at the end of loop.
The body of the loop executes at least once without depending on the test condition and
continues until the condition is true.

b. do.....while loop

Syntax:
do
{

body of the loop;
}while(test condition);

Flowchart:

EXAMPLE:
//Program to print numbers from 1 to 10 using do...while loop
#include<stdio.h>
void main()
{

int i;
i = 1;
do
{

printf("%d",i);
i++;

}while(i <= 10);
}

Output:
1 2 3 4 5 6 7 8 9 10

Here, loop is repeated till value of i is less than ot equal to 10.

"While loop" is entry-controlled loop (condition controlled) in which test condition is
evaluated at the beginning of the loop execution.
If the condition is true, only then the body of the loop executes, or else it does not.

c. while loop

Syntax:
while(test condition)
{
body of the loop;
}

Flowchart:

Example:
//program to print numbers from 1 to 10 using while loop.

#include<stdio.h>
void main()
{

int i;
i = 1;
while(i<=10)
{

printf("%d ", i);
i++;

}
}

Output:
1 2 3 4 5 6 7 8 9 10

Here, loop is repeated only if the value of i is
less than or equal to 10.

Jumps in Loops

There are two statements available that are used to jump out from the
loop after some condition is satisfied.
They are useful in solving various problems related to repetitive
structure.

Break statement
Continue statement

1.
2.

It is used to jump out of a loop. It terminates the execution of the nearest enclosing
loop.

Example:
do
{

scanf("%d",&n);
if(n == 0)

break;
printf("%d", n);

}while(1);

Syntax:
break;

Break statement1.

Here the numbers are read until user
enters 0(zero). All the numbers
entered except 0 are displayed on the
screen.

Flowchart:

Syntax:
continue;

It is used to bypass the remaining part of the current pass of a loop.
The loop will not be terminated when a continue statement is encountered.

Example:
for(i=1; i<=10; i++)
{

if(i == 5 || i == 6)
continue;

printf("%d",i);
}

2. Continue statement

Here the numbers from 1 to 10
except 5 and 6 are printed on the
screen.

Flowchart:

Function

Introduction
A Function is a self-contained program segment that carries out some specific, well-
defined task.
Functions are used to encapsulate a set of operations and return information to the
main program or calling routine.
A C program is usually made up of many small functions, each performing a particular
task, rather than one single large main() function.

 It makes programs significantly easier to understand and maintain.
Well written functions may be reused in multiple programs.
Different programmers working on one large project can divide the workload by
writing different functions.
Programs that use functions are easier to design, program, debug and maintain

Function is necessary in programming because the use of function provides several
benefits:

1.
2.
3.

4.

Library Functions
User-defined Functions

There are two types of functions. They are:

Types of functions:

Library Functions:
Library functions are predefined functions/built in functions in C library.
They are part of header files (such as stdio.h, math.h) which is called at runtime.
The function name, its return type, their argument number and types have been
already defined and can't be changed.
Example: printf(), scanf(), sqrt(), pow() etc.

User-defined Function:
The functions which are developed by user at the time of writing a program are called
user defined functions.
These functions can be defined and used by the programmers in C programs
according to their requirements.

Example: Here addNumbers() is an user defined function.
//declaring an user defined function which has been defined later.
float addNumbers(float, float); //function declaration(function prototype)
int main()
{

float result;
/* Calling user-defined function from the main function */
result = addNumbers(0.5,0.8);
printf(" Sum = %f ",result);
return 0;

}

//defining an user defined function which has been declared earlier.
float addNumbers(float a, float b)
{

float s;
s = a+b;
return s; //return statement with return expression

}

Output: Sum = 1.300000

Function declaration or prototype
Function definition (Function declarator or function body
Passing arguments
Return statement
Function call
Combination of function declaration and function definition

Concept associated with functions:

The name of the function.
The type of the value to be returned (optional, default return type is integer).
The number of arguments that must be supplied in a call to the function.
The type of arguments that must be supplied in a call to the function.

1) Function declaration or prototype:

A function declaration provides the following information to the compiler:

When a function call is encountered, the compiler checks the function call with its
declaration so that the correct argument types are used.

syntax: return_type function_name(type1 , type2 , type3 , , typeN);

2) Function definition(Function declarator and function body)

A function definition has two principal components:

a) Function declarator(The first line of the function definition): In function declarator and
the declaration, we must use the same function name, number of arguments, argument
types and the return type same as in the function declaration but does not have semicolon
at the end.

syntax: return_type function_name(type1 argument1 , type2 argument2 , type3
argument3, , typeN argumentN)

Note: where argument1, argument2, argument3...argumentN are called formal arguments
or formal parameters which are local to the function.

b) Body of the function: Function declarator is followed by the function body. It is
composed of statements that make up the function, delimited by braces which define the
actions to be taken by the function.

3) Passing arguments

Providing values to the formal arguments of called function through the actual arguments
of the calling function is called passing arguments.

Note: The function which calls other function is called the calling function and the function
which is called by other function is called the called function. In the above example, main
is a calling function because it calls the add function and add function is a called function
because it is called by the main function. Here add function can call other functions also.
At that time, the add function becomes a calling function

4) Return Statement
A function may or may not send back any value to the calling function. If it does, it is
through the return statement. While it is possible to pass to the called function any
number of arguments but the called function can only return one value per call, at the
most. The return statement can take one of the following forms.

Synatx: return or return (expression);
The plain return does not return any value. It acts as the closing brace of the function.
When a return is encountered,the control is immediately passed back to the calling
function.

Example: if(error)
return;

The second form of return expression returns the value of the expression.

It is possible for a function to have multiple return statements as in the following segment:
int calculate(char ch)
{

switch(ch)

{
case '+':

return 1;
case '-':

return 2;
case '*':

return 3;
case '/':

return 4;
default:

return 0;
}

}

If no value is to be returned, return statement need not be present

5) Function Call
A function is a inactive part of the program which comes into life when a call is made to the
function. A function call is specified by the function name followed by the values of
parameters enclosed within parentheses, terminated by a semicolon. If you need to store
the returned data in a variable, then assign this call to a variable.

Note: The number, type and order of arguments in the function declaration, function call and
function declarator must be the same.

6) Elimination of function declaration
If the functions are defined before they are called, then the declaration is unnecessary. In
the example below, the function add is defined before main i.e.,it is defined before calling it.

Syntax: return_type_variable = function_name (arg1, arg2,.....);
where arg1, arg2,.... are the actual arguments that are passed to the function. The values of
actual arguments are copied to the formal arguments respectively.

#include<stdio.h>
float add(int p, int q) /*defining function above the main function to eliminate function
declaration part*/
{

float s;
s = p+q;
return s;

}
void main()
{

int a;
float b, sum;
printf(" Enter the values to be added:\n");
scanf("%d%f", &a, &b);
sum = add(a , b);
printf("The sum is %d", sum);

}

Types of User Defined Functions
Depending upon the presence of arguments and the return type, user defined
functions can be classified into four categories:

 Function with no arguments and no return type
 Function with no arguments but having return type
 Function with arguments and no return type
 Function with both arguments and return type

1.
2.
3.
4.

1. Function with no arguments and no return type:
Function with no argument means the called function does not receive any data from
calling function and Function with no return value means calling function does not
receive any data from the called function. So there is no data transfer between calling
and called function.

C program to calculate the area of square using the function with no arguments
and no return values

#include<stdio.h>
void area();
int main()
{

area();
return 0;

}
void area()
{

int square_area, side;
printf(" Enter the side of the square: ");
scanf("%d", side);
square_area = side * side;
printf("Area of aquare = %d", square_area);

}

Explanation:
In the program aside, area(); function calculates area
and no arguments are passed to this function. The
return type of this function is void and hence return
nothing.

2. Function with no arguments but having return type:
As said earlier function with no arguments means called function does not receive any data
from calling function and function with one return value means one result will be sent back to
the caller from the function.

C program to calculate the area of square using the function with no arguments and
one return values
#include<stdio.h>
int area();
int main()
{

int square_area;
square_area = area();
printf("Area of aquare = %d", square_area);
return 0;

}

int area()
{

int square_area, side;
printf(" Enter the side of the square: ");
scanf("%d", side);
square_area = side * side;
return square_area;

}

Explanation: In this function int area(); no arguments are passed but it returns an integer value
square_area.

3. Function with arguments and no return type:
Here function will accept data from the calling function as there are arguments, however,
since there is no return type nothing will be returned to the calling program. So it's a one-
way type communication.

C program to calculate the area of square using the function with arguments and no
return values
#include<stdio.h>
void area(int); //function declaration
int main()
{

int square_side;
printf("Enter the side of the square");
scanf("%d", &square_side);
area(square_side); //function call
return 0;

}

void area(int side)
{

int square_area,;
square_area = side * side;
printf("Area = %d", square_area);

}

Explanation: In this function, the integer value
entered by the user in square_side variable is passed
to area();. The called function has void as a return type
as a result, it doesn't return value.

4. Function with both arguments and return type:
Function with arguments and one return value means both the calling function and called
function will receive data from each other. It's like a dual communication.

C program to calculate the area of square using the function with arguments and
return values

#include<stdio.h>
int area(int);
int main()
{

int square_side, square_area;
printf("Enter the side of the square");
scanf("%d", &square_side);
square_area = area(square_side); //function call
printf("Area = %d", square_area);
return 0;

}

int area(int side)
{

int square_area,;
square_area = side * side;
return square_area;

}

Ways of passing arguments to a Function
We can pass arguments to a function in two ways:
i) pass by value: Pass by value means to call the function by passing the value as argument to
the function. In this method, changes made to the formal argument in the called function has no
effect on the values of actual argument in the calling function.

Example:
#include<stdio.h>
#include<conio.h>
void swap(int, int);
void main()
{

int x=2, y=3;
printf("The values before swap are:");
printf("x = %d and y = %d",x,y);
swap(x, y);
printf("\n The values after swap are:");
printf("x = %d and y = %d", x, y);

getch();
}
void swap(int p, int q)
{

int temp;
temp = p;
p = q;
q = temp;

}

Output:
The values before swap are: x = 2 and y = 3
The values after swap are: x = 2 and y = 3

Example:
#include<stdio.h>
#include<conio.h>
void swap(int *, int *);
void main()
{

int x=2, y=3;
printf("The values before swap are:");
printf("x = %d and y = %d",x,y);
swap(&x, &y); //pass by reference
printf("\n The values after swap are:");
printf("x = %d and y = %d", x, y);
getch();
}

void swap(int *p, int *q)
{

int temp;
temp = *p;
*p = *q;
*q = temp;

}

Output:
The values before swap are: x = 2 and y = 3
The values after swap are: x = 3 and y = 2

ii) Pass by reference: Pass by reference means to call the function by passing
address(reference) as argument to the function. In this method, we can change the value of
actual argument from the called function.

Write a program to add two numbers using function. Make the function return the
value to the main function.

Step 1: Start
Step 2: Declare local variables a,b, sum and function add()
Step 3: Read values of a and b
Step 4: Call function add() with argument a and b

sum <-- add(a,b)
Step 5: Print sum
Step 6: Stop

Algorithm of calling function:

Algorithm of called function:
Step 1: Declare local variables x,y,s
Step 2: Assign a to x and b to y
Step 3: s <-- x + y
Step 4: Return s

Flowchart of calling function: Flowchart of called function:

Source code:
#include<stdio.h>
#include<conio.h>

int add(int,int);

void main()
{

int a,b,sum;
printf("Enter two numbers: ");
scanf("%d %d",&a,&b);
sum = add(a,b);
printf("The sum of the given numbers is %d",sum);
getch();

}

int add(int x, int y)
{

int s;
s = x + y;
return s;

}

Recursive Function
Recursion is a programming method in which a function calls itself.
A recursive function is defined as a function that calls itself to solve a smaller version of
its task until a final call is made which does not require a call to itself.
Two important conditions that must be satisfied by any recursive function are:

Each time a function calls itself, it must be closer to a solution.
There must be a decision criteria for stopping the process.

Therefore, recursion is defining large and complex problems in terms of a smaller and
more easily solvable problem.
A function may direcctly or indirectly call itself in the course of its execution. If the
function call is within its own body then the recursion is direct. If the function calls
another function which in turn calls itself, then such recursion is indirect.

A recursive function has the following general form:
return_type function_name(pass appropriate arguments)
{

if it is a simple case

return the simple value //base case or stopping condition
else

call function with simpler version of problem
}

/*an example to calculate the factorial of a given number using recursion */
#include<stdio.h>
int factorial(int);
int main()
{

 int n, fact;
printf("Enter a humber");
scanf("%d", n);
fact = factorial(n);
printf("The factorial of %d is %d", n, fact);
return 0;

}

int factorial(int n);
{

if(n<=1)
return 1;

else
return(n * factorial(n-1);

}

In the above example, To calculate n!, we have multiplied the number with factorial of the
number that is 1 less than that number. In other words, n! = n * (n-1)!

Let us say we need to find the value of 5!
5! = 5 * 4 * 3 * 2 * 1 = 120
This can be written as
5! = 5 * 4!
 = 5 * 4 * 3!
 = 5 * 4 * 3 * 2!
 = 5 * 4 * 3 * 2 * 1! terminating condition
 = 5 * 4 * 3 * 2 * 1
 = 120

Nested Function
C language also allows nesting of functions i.e. to use/call one function inside
another function's body.
It must be carefully used as it may lead to infinite nesting.

function1()
{

//function1 body here
function2();
//function1 body here

}

If function2() also has a call for function1() inside it, then in that case, it will lead to
an infinite nesting. That means, they will keep calling each other and the program
will never terminate.

How is nested function different from recursion?

Recursion is a special way of nesting functions, where a function calls itself inside it.
We must have a certain conditions in the function to break out of the recursion,
otherwise recursion will occur infinite times.

function1()
{

//function1 body here
function1();
//function1 body here

}

Scope of variables

These variables only exist inside the specific function that creates them.
They are unknown to other functions.
Local variables cease to exist once the function that created them is completed.
They are recreated each time a function is executed or called.

1.Local

Scope of a variable determines over what part(s) of a program a variable is actually
available for use.

2.Global
These variables can be accessed by any function compromising the program.
They do not get recreated if the function is recalled.
To declare a global variable, declare it outside of all the functions.
If a variable of the same name is declared both within a function and outside of it, the function will
use the variable that was declared within it and ignore the global one.
It is recommended to use as few global variables as possible.

Extent of variables

All variables declared within functions are auto by default.
Variables declared auto can only be accessed within the function or nested block within which they
are declared
They are created when the control is entered into the functions and destroyed when the control is
exited from the function.

auto int a;

1.auto variables

The time period during which memory is associated with a variable is called extent of variable

2.register variables
C allows the use of the prefix register in primitive variable declarations. Such variables are register
variables.
They are stored in the registers of the microprocessor
The number of variables, which can be declared register, are limited

register int i;

The value of the static variables persists until the end of the program.
A variable can be declared static using the keyword static like static int p;
Static variable may be internal or external type, depending on the place of declaration i.e. they may
be internal static variable or external static variable.
They are similar to auto variables except that they remain in existence(alive) throughout the
remainder of the program.
The static variables can be initialized only once.

3.static variables

#include<stdio.h>
void staticdemo();
void main()
{

staticdemo(); /*loop can be used to call staticdemo() four times */
staticdemo();
staticdemo();
staticdemo();

}

void staticdemo()
{

static int p=150;
p=p+10;
printf("p=%d\n",p);

}

in the given example, p is static variable. It retains its previous value so that the old
value is incremented by 1 in each function call. That is shown in the output.

Output:
p=160
p=170
p=180
p=190

4.extern variables
This class is used to transmit information across the blocks and functions and even across files.
Such variable is considered 'global' variables.
If the variable is declared outside function it is extern by default.

extern int a;

Summary of storage classes

Arrays and Strings

Array
An array is a collection of data items of similar data type in contiguous memory
location.
Arrays are used when we require processing of a number of data items of same type
i.e., having the common characteristics. For example, marks of students, salary of
employees of a company.
Therefore, arrays can be defined as a group of related data items that share a
common name.
If we want to use many elements of similar type then it is not feasible to declare all
variables and also manipulate these elements. So, in this case we use array.
Arrays are also called derived data type because they are derived from fundamental
data types.
The use of arrays allows for the development of smaller and more readable programs.

Declaration Syntax: data_type array_name[size];
e.g., int marks[5]; //creates an array marks to store 5 elements of integer type

1) One-dimensional arrays
Types of Array

Fig. Memory allocation
for one dimensional

 array of type int

To access individual element of an
array, a subscript or index must be
used as shown in the figure.

Elements of the array can be represented either as a single column or as a single
row

Input/Output in 1D array
for(i = 0;i<5;i++)
{

scanf("%d",&marks[i]); //input
}

for(i=0;i<5;i++)
{

printf("%d",marks[i]); //output
}

As we know, in one-dimensional arrays, data items are arranged in one direction.
Whereas data items in two-dimensional arrays are arranged in two directions: horizontal and
vertical.
The data items arranged in horizontal direction are referred as rows and the data items
arranged in vertical direction are referred as columns.

2) Two- dimensional arrays

Declaration syntax: data_type array_name[row_size][column_size];

e.g. int marks[3][3]; // creates a two dimensional array to store 9 elements of integer type. There
are 3 rows and 3 columns in the array marks.

Fig. Memory allocation for each element
of two-dimensional array

To access individual elements of two dimensional
array, a pair of subscript is used to indicate row and
column position as shown in the figure.

for(i=0 ; i<3 ; i++)
{

for(j=0 ; j<3 ; j++)
{

scanf("%d", &marks[i][j]); //input
}

}
for(i=0 ; i<3 ; i++)
{

for(j=0 ; j<3 : j++)
{

printf("%d", marks[i][j]); //output
}

}

Input/Output in 2D array

// A program that reads two dimensional arrays, adds the corresponding elements and
displays the result on the screen.
#include<stdio.h>
void main()
{

int i, j, arr1[5][5], arr2[5][5], arr3[5][5], r1, r2, c1, c2;
printf("Enter the maximum size of row and column of array 1:");
scanf("%d %d", &r1, &c1);
printf("Enter the maximum size of rows and column of array 2:");
scanf("%d %d", &r2, &c2);
if(r1 == r2 && c1 == c2)
{

for(i = 0 ; i < r1; i++)
{

for(j = 0; j < c1; j++)
{

printf(" arr1[%d][%d]: " ,i ,j);
scanf(" %d " , &arr1[i][j]);

}
}
for(i = 0 ; i < r2 ; i++)
{

for(j = 0 ; j < c2 ; j++)
{

printf(" arr2[%d][%d]: ", i , j);
scanf(" %d " , &arr2[i][j]);

}
}
for(i = 0 ; i < r1 ; i++)
{

for(j = 0 ; j < c1 ; j++)
{

arr3[i] [j] = arr1[i] [j] + arr2[i] [j];
printf(" arr3[%d] [%d] = %d ", i, j, arr3[i][j]);

}
}
else

printf(" Array size mismatch.");
}

OUTPUT:
Enter the maximum size of row and column of array 1: 2 3
Enter the maximum size of row and column of array 2: 2 3
arr1[0][0] : 1
arr1[0][1] : 2
arr1[0][2] : 3
arr1[1][0] : 4
arr1[1][1] : 5
arr1[1][2]: 6

arr2[0][0]: 7
arr2[0][1]: 8
arr2[0][2]: 9
arr2[1][0]: 10
arr2[1][1]: 11
arr2[1][2]: 12

arr3[0][0] : 8
arr3[0][1] : 10
arr3[0][2] : 12
arr3[1][0] : 14
arr3[1][1] : 16
arr3[1][2] : 18

Initialization in array:

One dimensional array:
We can initialize the elements of array in the same way as the ordinary variables when
they are declared. The general form if initialization is:
Syntax: data_type array_name[] = { List of initializers };

 e.g. int a[] = {1,2,3,4,5};
Note: Size is not necessary while initializing.

Two dimensional array:
Syntax: data_type array_name[] [column_size] = { List of initializers };

e.g: int a[] [3] = { {1,2,3}, {4,5,6}, {6,7,8} };
 int a[] [3] = { 1,2,3,4,5,6,7,8 };
Here each row in the array contains three elements.

Note: Row size is not necessary but column size is compulsory.

e.g: int a[5] = { 1, 2, 3 }

Similarly, when the input data is or appears to be shorter than the reserved space (due to
errorneous assumptions, incorrect length values, or copying raw data as a C string) this is
called an underflow error.

e.g: int a[5] = { 1, 2, 3, 4, 5, 6 }

Important:
Errors that occur due to the mismatch of the array size and the number of the elements
can cause overflow and underflow errors. Actually there is no bounds checking in array in
C, hence it doesn't generate any real error but it may cause undesirable effects.
When input data is longer than will fit in the reserved space, if you don't truncate it, the
data will overwrite other data in the memory. When this happens it is called an overflow. If
the memory overwritten contained data essential to the operation of the program, this
overflow causes a bug that, being intermittent, might be very hard to find.

Passing Arrays to User Defined Functions

The function must be called by passing only the name of the array and its size
In the function definition, the formal parameters must be an array type; the size
of the array does not need to be specified
The function prototype must show that the argument is an array

3 rules govern the passing of arrays to user-defined functions:

1.Passing 1D Array to Function
We can pass the whole array element from a function by passing the name of
the array.
 The array name refers to the first byte of the array in memory and the address
of rest of the elements in the array can be calculated using the array name and
the index value of the element. Therefore, we simply pass the name of the array
when an entire array needs to be passed as shown below:

void func(int [], int);

void main()
{

int arr[5] = {1,2,3,4,5};
func(arr,5);

}

void func(int arr[], int n)
{

int i;
for(i=0;i<n;i++)

printf("%d",arr[i]);
}

2.Passing 2D Array to Function
To pass a two-dimensional array to a function we have to pass the array name
and size(row and column) as the actual argument.
The size of dimension except the first must be included in the function
prototype(declaration) and in function definition.

void display(int [][10], int, int); //function declaration
void main()
{

int arr[10][10] , i , j;
for(i = 0; i < 10; i++)
{

for(j = 0; j < 10; j++)
{ scanf(" %d " , &arr[i][i]) ; }

}
display(arr,10,10); //function call

}

void display(int b[][10], int m, int n)
{

int i , j ;
printf("the entered array is: ");
for(i=0;i<n;i++)
{

for(j = 0; j < n; j++)
{ printf(" %d\t " , b[i][j]); }
printf("\n");

}
}

String
String is an array of characters terminated by a null character('\0').
It is a sequence of characters that is treated as a single data item.
After the last character, a null character is stored to signify the end of the character
array.

For e.g., if we write
char str[] = "HELLO"; //string initialization

We are declaring a character array that has five usable characters namely, H,E,L,L and
O.
Apart from these characters, a null character('\0') is stored at the end of the string.
So, the internal representation of the string becomes HELLO'\0', to store a string of
length 5, we need 5+1 locations(1 extra for the null character)

String handling functions
There are various string handling functions defined under the header file <string.h>.
Some of them are as follows:

strlen(): it gives the number of characters excluding the null character in any string, which is
the length of the string.

strcpy(): It copies the content of any string to another string similar to assigning any value to
another variable .

strcat(): It concatenates any two strings i.e. joins any string to another string

strcmp(): It gives the difference between the ASCII values of first mismatching characters
between any two strings.

 Syntax: l = strlen(str); where 'l' is any integer variable and 'str' is any string variable

Syntax: strcpy(str1,str2); here the content of string 'str2' is copied to the string 'str1'.

Syntax: strcat(str1,str2); here the content of string 'str2' is attached to the last of the string
'str1'.

Syntax: d = strcmp(str1,str2); where 'd' is any integer variable. If d = 0, it means that both
strings str1 and str2 are same or equal. If d>0, it means that str2 comes before str1 in
alphabetical order and if d<0, it means that str1 comes before str2 in alphabetical order.

// A program to calculate length of string without using strlen function
#include<stdio.h>
#include<conio.h>
void main()
{

int i, len = 0;
char str[20];
printf(" Enter any string: ");
gets(str);
for(i = 0 ; str[i] != '\0' ; i++)
{

len++;
}
printf(" The length of the string is %d. " , len);

}

OUTPUT:
Enter any string: Nepal
The length of the string is 5

