
INTRODUCTION TO

DATA STRUCTURE

1

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

3  Data Structure is a systematic way to organize data in order to use it efficiently. Following terms are

the foundation terms of a data structure.

 Interface

 Each data structure has an interface. Interface represents the set of operations that a data structure supports.

 An interface only provides the list of supported operations, type of parameters they can accept and return

type of these operations.

 Implementation

 Implementation provides the internal representation of a data structure.

 Implementation also provides the definition of the algorithms used in the operations of the data structure.

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

4 Characteristics of a Data Structure:

 Correctness

 Data structure implementation should implement its interface correctly.

 Time Complexity

 Running time or the execution time of operations of data structure must be as small as possible.

 Space Complexity

 Memory usage of a data structure operation should be as little as possible.

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

5 Need for Data Structure:

 As applications are getting complex and data rich, there are three common problems that applications

face now-a-days.

 Data Search

 Consider an inventory of 1 million(10^6) items of a store. If the application is to search an item, it has to

search an item in 1 million(10^6) items every time slowing down the search. As data grows, search will

become slower.

 Processor speed

 Processor speed although being very high, falls limited if the data grows to billion records.

 Multiple requests

 As thousands of users can search data simultaneously on a web server, even the fast server fails while

searching the data.

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

6  To solve the above-mentioned problems, data structures come to rescue.

 Data can be organized in a data structure in such a way that all items may not be required to be

searched, and the required data can be searched almost instantly.

Execution Time Cases:

 There are three cases which are usually used to compare various data structure's execution time in a

relative manner.

 Worst Case

 This is the scenario where a particular data structure operation takes maximum time it can take.

 If an operation's worst case time is ƒ(n) then this operation will not take more than ƒ(n) time where ƒ(n)

represents function of n.

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

7  Average Case

 This is the scenario depicting the average execution time of an operation of a data structure.

 If an operation takes ƒ(n) time in execution, then m operations will take m*ƒ(n) time.

 Best Case

 This is the scenario depicting the least possible execution time of an operation of a data structure.

 If an operation takes ƒ(n) time in execution, then the actual operation may take time as the random number

which would be maximum as ƒ(n).

Basic Terminology:

 Data − Data are values or set of values.

 Data Item − Data item refers to single unit of values.

 Group Items − Data items that are divided into sub items are called as Group Items.

Er. Pralhad Chapagain

DATA STRUCTURE- OVERVIEW

8  Elementary Items − Data items that cannot be divided are called as Elementary Items.

 Attribute and Entity − An entity is that which contains certain attributes or properties, which may

be assigned values.

 Entity Set − Entities of similar attributes form an entity set.

 Field − Field is a single elementary unit of information representing an attribute of an entity.

 Record − Record is a collection of field values of a given entity.

 File − File is a collection of records of the entities in a given entity set.

Er. Pralhad Chapagain

DATA STRUCTURE- CLASSIFICATION

9 1. STATIC AND DYNAMIC DATA STRUCTURE:

 Static Data Structure are those whose size is fixed at compile time and doesn’t grow or shrink at

run time. E.g. Array

 Dynamic Data Structure are those whose size is not fixed at compile time and that can grow or

shrink at run time so as to make efficient use of memory. E.g. Linked List

 Arrays and Linked list are basic data structures that are used to implement other data structure such

as stack, queue, trees and graphs. So any other data structure can be static or dynamic depending on

whether they are implementing using an array or linked list.

2. PRIMITIVE AND NON-PRIMITIVE DATA STRUCTURE:

 Primitive Data Structure are those data types which are provided by a programming language as

basic building block. So, primitive data types are predefined types of data, which are supported by

programming language. E.g. integer, float, character etc.

Er. Pralhad Chapagain

DATA STRUCTURE- CLASSIFICATION

10  Non-Primitive Data Structure are those data types which are not defined by programming language

but are instead created by the programmer by using primitive data types. E.g. array, linked list, stack,

queue, tree etc.

3. LINEAR AND NON-LINEAR DATA STRUCTURE:

 A data structure is said to be linear if its elements form a sequence i.e. linear list. So, here while

traversing the data elements sequentially, only one element can directly be reached. Example: Array,

stack, queue

 A data structure is said to be non linear if its elements do not form a sequence. So, here every data

items is attached to several other data items. Tree and Graph are examples of non linear data

structure.

Er. Pralhad Chapagain

DATATYPES AND ABSTRACT DATATYPE (ADT)

11  A data type is a classification of data, which can store specific type of information.

 Data types are primarily used in computer programming in which variables are created to store data.

 Each variable is assigned a data type that determine what type of data the variable may contain.

 Data type is a collection of values and set of operation on those values.

 Example: in the statement int a=5, ‘a’ is a variable of data type integer which stores integer value 5

and allow different mathematical operations like addition, subtraction, multiplication and division.

ADT:

 We can perform some specific operations with data structure, so data structure with these operations

are called Abstract Data Types (ADT).

 ADT have their own data type and methods to manipulate data.

 It is a useful tool for specifying the logical properties of a data type.

Er. Pralhad Chapagain

DATATYPES AND ABSTRACT DATATYPE (ADT)

12  A data type or data structure is the implementation of ADT.

 So ADT allow us to work with abstract idea behind a data type or data structure without getting

bagged down in the implementation detail. The abstraction in this case is called an abstract data type.

Advantage of abstract data type:

 Encapsulation:

 Encapsulation is a process by which we can combine code and data and it manipulates into a single unit.

 While working with ADT, the user doesn’t require knowing how the implementation works because

implementation is encapsulated in a simple interface.

 Flexibility:

 If different implementations of ADT are equivalent then they can be interchangeable in the code. So user

have flexibility to select the one which is most efficient in different situations.

Er. Pralhad Chapagain

DATATYPES AND ABSTRACT DATATYPE (ADT)

13  Localization if change:

 If ADT is used then if changes are made to the implementation then it doesn’t require any changes in the

code.

 Example: Stack is ADT which have pop and push operation for deleting and inserting element.

Er. Pralhad Chapagain

DATA STRUCTURE OPERATIONS

14  Traversing :- Accessing each record so that some item in the record may be processed.

 Searching :- Finding the location of the record with the given key value

 Inserting :- Adding new record to the data structure

 Deleting :- Removing record from the data structure

 Sorting :- Arranging the record in some logical order

 Merging :- Combining the record of different sorted file into single sorted file.

Example:

 An array A having n element is ADT which have following operations

 Create(A) :- create an array A

 Insert(A,x) :- insert an element x into an array A in any location

 Delete(A,x) :- remove element x

Er. Pralhad Chapagain

DATA STRUCTURE OPERATIONS

15  Traverse(A):- access each element of an array A

 Modify(A,x,y) :- Change the old element x with new element y

 Search(A,x) :- search element x in an array A

 Merge (A,B,C) :- Combine the elements of array B and C and store in new array A

Er. Pralhad Chapagain

1. Which of this best describes an array?

a) A data structure that shows a hierarchical behavior

b) Container of objects of similar types

c) Arrays are immutable once initialized

d) Array is not a data structure

2. How do you initialize an array in C?

a) int arr[3] = (1,2,3);

b) int arr(3) = {1,2,3};

c) int arr[3] = {1,2,3};

d) int arr(3) = (1,2,3);

3. How do you instantiate an array in Java?

a) int arr[] = new int(3);

b) int arr[];

c) int arr[] = new int[3];

d) int arr() = new int(3);

4. Which of the following is the correct way to declare a multidimensional array in Java?

a) int[] arr;

b) int arr[[]];

c) int[][]arr;

d) int[[]] arr;

5. What is the output of the following Java code?

a) 3 and 5

b) 5 and 3

c) 2 and 4

d) 4 and 2

6. What is the output of the following Java code?

a) 4

b) 5

c) ArrayIndexOutOfBoundsException

d) InavlidInputException

7. When does the ArrayIndexOutOfBoundsException occur?

a) Compile-time

b) Run-time

c) Not an error

d) Not an exception at all

13. Elements in an array are accessed _____________

a) randomly

b) sequentially

c) exponentially

d) logarithmically

9. What are the advantages of arrays?

a) Objects of mixed data types can be stored

b) Elements in an array cannot be sorted

c) Index of first element of an array is 1

d) Easier to store elements of same data type

10. What are the disadvantages of arrays?

a) Data structure like queue or stack cannot be implemented

b) There are chances of wastage of memory space if elements inserted in an array are lesser than the allocated size

c) Index value of an array can be negative

d) Elements are sequentially accessed

11. Assuming int is of 4bytes, what is the size of int arr[15];?

a) 15

b) 19

c) 11

d) 60

12. In general, the index of the first element in an array is __________

a) 0

b) -1

c) 2

d) 1

THE STACK

Er. Pralhad Chapagain
19

INTRODUCTION

• A stack is an ordered collection of homogenous data elements where the insertion and deletion operation

occurs at only one ends called top of the stack.

• As all the insertion and deletion is performed from top of the stack, the last item that is inserted in a stack is

the first one to be deleted.

• Therefore stack is also called as last in first out (LIFO) data structure.

• The insertion (addition) operation is referred to as PUSH and the deletion (remove) operation as POP.

• A stack is said to be empty or underflow, if the stack contains no elements. At this point, the top of the stack

is present at the bottom of the stack.

• In addition, it is overflow when the stack becomes full, i.e. , no other elements can be pushed onto the stack.

At this point, top pointer is at the highest location of the stack.

• Consider an array of size[4]with the name stack i.e. stack[4] then the insertion and deletion operation that

can be performed on stack is shown below:

Er. Pralhad Chapagain 20

INTRODUCTION

3

2

1

0

Er. Pralhad Chapagain 21

3

2

1

A 0

3

2

B 1

A 0

3

C 2

B 1

A 0

D 3

C 2

B 1

A 0

3

C 2

B 1

A 0

3

2

B 1

A 0

3

2

1

A 0

3

2

1

0

Top=-1
PUSH (A) PUSH (B) PUSH (C) PUSH (D)

POP ()→D

Top

POP ()→C POP ()→ B POP () →A

Top=-1

Top

Top

Top

Top

Top

Top

Fig: PUSH and POP operation

STACK AS AN ADT/ OPERATION ON STACK

• Stack is generally implemented with two basic operation such as PUSH and POP.

• These two operations are also called as primitive operation on stack.

PUSH operation

• The processing of adding a new element to the top of stack is called PUSH operation.

• For each PUSH operation, the value of top is increased by 1.

• If the array is full and no new element can be accommodate, then the stack overflows condition occurs.

• E.g. PUSH (A,S)→ insert element A at the top of the stack, S

POP operation:

• The process of deleting an element from the top of the stack is called POP operation.

• After every POP operation, the stack is decremented by one.

• If there is no element in the stack and the POP operation is performed then the stack underflow condition

occurs.

Er. Pralhad Chapagain 22

STACK AS AN ADT/ OPERATION ON STACK

• E.g. POP(S) → deleting the element from top of the stack, S

• Also, we can define following additional operation that can be performed on stack.

• TOP (S) → Return the elements at the top of the stack.

• ISEMPTY (S) → Check the stack, S, is empty or not. If the stack is empty it returns true (1) otherwise false

(0)

• ISFULL (S) → Check the stack, S, is full or not. If the stack is full it returns true (1) otherwise false (0)

• MAKENULL (S) → Make stack S is an empty stack.

• SEARCH (X,S) → Get the location of item X in stack S.

• TRAVERSE (S) → Read each elements only once from the stack S

• MAX (S) → Get the maximum value from the stack, S

• MIN (S) → Get the minimum value from the stack, S

Er. Pralhad Chapagain 23

ALGORITHM FOR PUSH AND POP OPERATION

PUSH OPERATION:

• Assuming a stack named STACK of size MAX with the TOP pointer that points

to the top most element of the stack and DATA is the data item to be pushed.

1.If TOP==(MAX-1) then

a. Display “Stack Overflow”

b. Exit

2.Read DATA

3.TOP=TOP+1

4.STACK[TOP] DATA

5.Exit

Er. Pralhad Chapagain 24

ALGORITHM FOR PUSH AND POP OPERATION

POP OPERATION:

• Assuming a stack named STACK of size MAX with the TOP pointer that points

to the top most element of the stack and DATA is the data item to be popped.

1.If TOP==-1 then

a. Display “Stack underflow”

b. Exit

2.DATASTACK[TOP]

3.TOP=TOP-1

4.Exit

Er. Pralhad Chapagain 25

STACK IMPLEMENTATION

• Static Implementation (Using Arrays)

• Dynamic Implementation (Using Pointer)

Static Implementation:

• Static implementation using array is very simple technique but is not a flexible way, as the size of the stack

has to be declared during the program design, because after that, the size can not be varied.

• Moreover, static implementation is not an efficient method when resource optimization is concerned.

Dynamic Implementation:

• when a stack is implemented by using link list i.e. uses pointer to implement the stack, then the stack is said

to be dynamic.

• In this case memory is dynamically allocated to the stack and the memory size can grow and shrink at run

time.

Er. Pralhad Chapagain 26

STACK APPLICATION

• It is used to reverse the string.

• It is used to implement function call.

• It is used to maintaining the undo list for an application.

• It is used for checking the validity for expression

• It is used for converting infix expression to post fix or prefix expression

• To keep page visited history in web browser.

• Sorting

• Backtracking

Er. Pralhad Chapagain 27

INFIX, PREFIX AND POSTFIX NOTATION

• Infix notation: The operator symbol is placed between two operand. E.g. a+b

• Prefix notation: The operator symbol is placed before two operand E.g. +ab

• Postfix Notation: The operator is placed after two operand E.g. ab+

• Using infix notation, if the expression consists of more than one operator and brackets, the precedence rule

(BODMAS) should be applied to decide which operator or which section of expression are evaluated first.

• So, the computer usually evaluates an infix expression first by converting it to postfix and evaluating the

postfix expression by using stack.

• As soon as an operator appears in the postfix expression during scanning of postfix expression the topmost

operands are popped off and are calculated by applying the encountered operator.

Er. Pralhad Chapagain 28

CONVERSION OF INFIX TO POSTFIX EXPRESSION

ALGORITHM FOR CONVERTING INFIX EXPRESSION TO POSTFIX EXPRESSION

USING STACK

• Suppose Q is an arithmetic expression written in infix notation, and P is the expression written in

postfix notation, then algorithm that finds the equivalent postfix expression is given below:

1. Scan Q from left to right for each element of Q until end of infix expression is encountered

2. If scanned element is

a. Operand:

I. Add the operand to the postfix expression, P

b. Operator:

I. If the precedence of the operator on the top of the stack is greater or equal to precedence of scanned operator, pop the

operator from the stack and append it to the postfix expression, P. Repeat this step until the operator at the top of the stack

has precedence less than the scanned operator or stack become empty.

Er. Pralhad Chapagain 29

CONVERSION OF INFIX TO POSTFIX EXPRESSION

II. Push the scanned operator on the top of the stack.

c. Left parenthesis:

I. Push the left parenthesis on to the top of stack.

d. Right parenthesis

I. Pop stack element one by one and append to the postfix expression, until a last

parenthesis is popped.

3. POP all the entries from the stack and append them to postfix

expression

Er. Pralhad Chapagain 30

CONVERSION OF INFIX TO POSTFIX EXPRESSION

Example:

Er. Pralhad Chapagain 31

CONVERSION OF INFIX TO POSTFIX EXPRESSION

Example:

Er. Pralhad Chapagain 32

CONVERSION OF INFIX TO POSTFIX EXPRESSION

Example:

Er. Pralhad Chapagain 33

For practice:

1. (A-B)-C+D*E+F

ANS: AB-C-DE*+F+

EVALUATION OF POSTFIX EXPRESSION

• Once the infix expression is converted into postfix expression, we can write the

algorithm for evaluating postfix expression as below:

1.Scan the elements in postfix expression from left to right until end of the postfix

expression is encountered.

2.If the scanned element is:

a. Operand : PUSH it into stack

b. Operator :

I. POP the top two values

II. Operate the two values by using the operator (just below the top of the stack operand to top of the stack

operand)

III. PUSH the result back to the stack.

3. Get the result from top of the stack.

Er. Pralhad Chapagain 34

EVALUATION OF POSTFIX EXPRESSION

Example:

Er. Pralhad Chapagain 35

EVALUATION OF POSTFIX EXPRESSION

Example:

Er. Pralhad Chapagain 36

EVALUATION OF POSTFIX EXPRESSION

Example:

• ABC+*DE/- where A=5, B=6, C=2, D=12, E=4

Solution:

Given expression becomes: 5 6 2 +* 12 4 / -

Er. Pralhad Chapagain 37

Char

Scanned

Operand

1

Operand

2

Value Stack

5 5

6 5, 6

2 5,6,2

+ 6 2 8 5,8

* 5 8 40 40

12 5 8 40 40, 12

4 5 8 40 40, 12, 4

/ 12 4 3 40, 3

- 40 3 37 37

INFIX TO PREFIX CONVERSION
• Suppose Q is an arithmetic expression written in infix notation then the algorithm that finds the

equivalent prefix expression is given below:

1. Reverse the element of arithmetic expression, Q

2. Replace → (by), { by } , [by] ,) by (, } by { and] by [

3. Convert the reversed arithmetic expression Q into postfix expression.

4. Scan Q from left to right for each element of Q until end of infix expression is encountered

5. If scanned element is

a. Operand:

i. Add the operand to the postfix expression, P

b. Operator:

i. If the precedence of the operator on the top of the stack is greater or equal to precedence of scanned operator, pop the

operator from the stack and append it to the postfix expression, P. Repeat this step until the operator at the top of the stack

has precedence less than the scanned operator or stack become empty.

Er. Pralhad Chapagain 38

INFIX TO PREFIX CONVERSION

ii. Push the scanned operator on the top of the stack.

c) Left parenthesis:

i. Push the left parenthesis on to the top of stack.

d)Right parenthesis

i. Pop stack element one by one and append the to the postfix expression, until a last

parenthesis is popped.

6.POP all the entries from the stack and append them to postfix expression

7.Reverse the obtained postfix expression element to obtain required prefix

expression.

Er. Pralhad Chapagain 39

INFIX TO PREFIX CONVERSION
Example:

Convert into prefix expression : (A + B * C)

Solution: Reverse the above infix expression:

) C * B + A (

Replacing (by) and) by (, we get

(C * B + A)

We know, Prefix is equal to reverse of postfix expression. So, the required prefix expression is:

 + A * B C

Er. Pralhad Chapagain 40

Scanned Character Stack Postfix Expression

((

C (C

* (* C

B (* C B

+ (+ C B *

A (+ C B * A

) C B * A +

INFIX TO PREFIX CONVERSION

Example:

Convert into prefix expression (A+B)*(C-D)

Solution: Reverse the above infix expression:

)D-C(*)B+A(

Replacing (by) and) by (, we get

(D-C)*(B+A)

We know, Prefix is equal to reverse of postfix

expression. So, the required prefix expression is:

 *+AB-CD

Er. Pralhad Chapagain 41

Scanned

Character

Stack Postfix

Expression

((

D (D

- (- D

C (- DC

) DC-

* * DC-

(*(DC-

B *(DC-B

+ *(+ DC-B

A *(+ DC-BA

) * DC-BA+

DC-BA+*

 EVALUATION OF PREFIX EXPRESSION

1.Accept Prefix expression

2.Reverse the input prefix expression or scan the element in prefix

expression from right to left until the end of the prefix expression is

encountered.

3.If the scanned character is operand, PUSH it onto the stack.

4.If it is operator, then POP two elements from stack and perform the

operation performed by operator (from top of the stack operand to just

below the top of stack operand) and PUSH the result back to stack.

5.Get result from top of the stack

Er. Pralhad Chapagain 42

 EVALUATION OF PREFIX EXPRESSION

Example:

Evaluate the following prefix expression: a) /+5,3-4,2 b) +5*3,2

Er. Pralhad Chapagain 43

Char

Scanned

Operand 1 Operand 2 Value Stack

2 2

4 2,4

- 4 2 2 2

3 4 2 2 2,3

5 4 2 2 2,3,5

+ 5 3 8 2,8

/ 8 2 4 4

Char

Scanned

Operand 1 Operand 2 Value Stack

2 2

3 2,3

* 3 2 6 6

5 3 2 6 6,5

+ 5 6 11 11

 POSTFIX TO INFIX CONVERSION

1.Scanned the POSTFIX expression from left to right

2.If scanned character is

a. Operand

i. PUSH it into the stack

b. Operator

i. Pop the top two values from the stack

ii. Put the operator, with the values as arguments and form a string

iii. Encapsulate the resulted string with parenthesis

iv. PUSH the resulted string back to stack

3. The value in the stack is the desired infix string.
Er. Pralhad Chapagain 44

 POSTFIX TO INFIX CONVERSION

Example:

ABC-+DE-FG-H+/*

Er. Pralhad Chapagain 45

Expression Stack

ABC-+DE-FG-H+/* Null

BC-+DE-FG-H+/* A

C-+DE-FG-H+/* A,B

-+DE-FG-H+/* A,B,C

+DE-FG-H+/* A,(B-C)

DE-FG-H+/* (A+(B-C))

E-FG-H+/* (A+(B-C)),D

-FG-H+/* (A+(B-C)),D,E

FG-H+/* (A+(B-C)),(D-E)

G-H+/* (A+(B-C)),(D-E),F

-H+/* (A+(B-C)),(D-E),F,G

H+/* (A+(B-C)),(D-E),(F-G)

+/* (A+(B-C)),(D-E),(F-G),H

/* (A+(B-C)),(D-E),((F-G)+H)

* (A+(B-C)),((D-E)/((F-G)+H))

(A+(B-C))*((D-E)/((F-G)+H))

1. Process of inserting an element in stack is called ____________

a) Create

b) Push

c) Evaluation

d) Pop

2. Process of removing an element from stack is called __________

a) Create

b) Push

c) Evaluation

d) Pop

3. In a stack, if a user tries to remove an element from an empty stack it is called _________

a) Underflow

b) Empty collection

c) Overflow

d) Garbage Collection

4. Pushing an element into stack already having five elements and stack size of 5, then stack becomes ___________

a) Overflow

b) Crash

c) Underflow

d) User flow

5. Entries in a stack are “ordered”. What is the meaning of this statement?

a) A collection of stacks is sortable

b) Stack entries may be compared with the ‘<‘ operation

c) The entries are stored in a linked list

d) There is a Sequential entry that is one by one

6. Which of the following is not the application of stack?

a) A parentheses balancing program

b) Tracking of local variables at run time

c) Compiler Syntax Analyzer

d) Data Transfer between two asynchronous process

7. Consider the usual algorithm for determining whether a sequence of parentheses is balanced. The maximum number
of parentheses that appear on the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(()))?

a) 1

b) 2

c) 3

d) 4 or more

8. Consider the usual algorithm for determining whether a sequence of parentheses is balanced. Suppose that you run
the algorithm on a sequence that contains 2 left parentheses and 3 right parentheses (in some order). The maximum
number of parentheses that appear on the stack AT ANY ONE TIME during the computation?

a) 1

b) 2

c) 3

d) 4 or more

9. What is the value of the postfix expression 6 3 2 4 + – *?

a) 1

b) 40

c) 74

d) -18

10. Here is an infix expression: 4 + 3*(6*3-12). Suppose that we are using the usual stack algorithm to convert the
expression from infix to postfix notation. The maximum number of symbols that will appear on the stack AT ONE
TIME during the conversion of this expression?

a) 1

b) 2

c) 3

d) 4

11. The postfix form of the expression (A+ B)*(C*D- E)*F / G is?

a) AB+ CD*E – FG /**

b) AB + CD* E – F **G /

c) AB + CD* E – *F *G /

d) AB + CDE * – * F *G /

12. The data structure required to check whether an expression contains a balanced parenthesis is?

a) Stack

b) Queue

c) Array

d) Tree

13. What data structure would you most likely see in non recursive implementation of a recursive algorithm?

a) Linked List

b) Stack

c) Queue

d) Tree

14. The process of accessing data stored in a serial access memory is similar to manipulating data on a ________

a) Heap

b) Binary Tree

c) Array

d) Stack

15. The postfix form of A*B+C/D is?

a) *AB/CD+

b) AB*CD/+

c) A*BC+/D

d) ABCD+/*

16. Which data structure is needed to convert infix notation to postfix notation?

a) Branch

b) Tree

c) Queue

d) Stack

17. The prefix form of A-B/ (C * D ^ E) is?

a) -/*^ACBDE

b) -ABCD*^DE

c) -A/B*C^DE

d) -A/BC*^DE

18. What is the result of the following operation?

Top (Push (S, X))

a) X

b) X+S

c) S

d) XS

19. The prefix form of an infix expression (p + q) – (r * t) is?

a) + pq – *rt

b) – +pqr * t

c) – +pq * rt

d) – + * pqrt

20. Which data structure is used for implementing recursion?

a) Queue

b) Stack

c) Array

d) List

21. The result of evaluating the postfix expression 5, 4, 6, +, *, 4, 9, 3, /, +, * is?

a) 600

b) 350

c) 650

d) 588

22. Convert the following infix expressions into its equivalent postfix expressions.

(A + B ⋀D)/(E – F)+G

a) (A B D ⋀ + E F – / G +)

b) (A B D +⋀ E F – / G +)

c) (A B D ⋀ + E F/- G +)

d) (A B D E F + ⋀ / – G +)

23. Convert the following Infix expression to Postfix form using a stack.

x + y * z + (p * q + r) * s, Follow usual precedence rule and assume that the expression is legal.

a) xyz*+pq*r+s*+

b) xyz*+pq*r+s+*

c) xyz+*pq*r+s*+

d) xyzp+**qr+s*+

24. Which of the following statement(s) about stack data structure is/are NOT correct?

a) Linked List are used for implementing Stacks

b) Top of the Stack always contain the new node

c) Stack is the FIFO data structure

d) Null link is present in the last node at the bottom of the stack

25. Consider the following operation performed on a stack of size 5.

After the completion of all operation, the number of elements present in stack is?

a) 1

b) 2

c) 3

d) 4

26. Which of the following is not an inherent application of stack?

a) Reversing a string

b) Evaluation of postfix expression

c) Implementation of recursion

d) Job scheduling

27. The type of expression in which operator succeeds its operands is?

a) Infix Expression

b) Prefix Expression

c) Postfix Expression

d) Both Prefix and Postfix Expressions

28. Assume that the operators +,-, x are left associative and ^ is right associative. The order of precedence (from highest to lowest) is ^,
x, +, -. The postfix expression for the infix expression a + b x c – d ^ e ^ f is?

a) a b c x + d e f ^ ^ –

b) a b c x + d e ^ f ^ –

c) a b + c x d – e ^ f ^

d) – + a x b c ^ ^ d e f

29. If the elements “A”, “B”, “C” and “D” are placed in a stack and are deleted one at a time, what is the order of removal?

a) ABCD

b) DCBA

c) DCAB

d) ABDC

8. Consider you have a stack whose elements in it are as follows.

5 4 3 2 << top

Where the top element is 2.

You need to get the following stack

6 5 4 3 2 << top

The operations that needed to be performed are (You can perform only push and pop):

a) Push(pop()), push(6), push(pop())

b) Push(pop()), push(6)

c) Push(pop()), push(pop()), push(6)

d) Push(6)

QUEUE

Er. Pralhad Chapagain
56

QUEUE - INTRODUCTION

• A QUEUE is logically a First In First Out (FIFO) linear data

structure.

• It is a homogeneous collection of elements in which new elements

are added at one end called rear, and the existing elements are

deleted from other end called front.

Er. Pralhad Chapagain 57

QUEUE AS AN ADT/ OPERATION ON QUEUE

• There are two basic operations/ primitive operation that can be performed on

queue.

Enqueue ():

• It refers to the addition of an item in the queue.

• Items are always inserted at the rear end of queue

• Whenever we insert a data items the value of rear is increased by 1 i.e. rear = rear+1

Dequeue ():

• It refers to the deletion of an item from the queue

• Item are always deleted from the front end of queue

• Whenever an item is deleted from the queue the value of front is increased by 1 i.e. front =

front+1
Er. Pralhad Chapagain 58

QUEUE AS AN ADT/ OPERATION ON QUEUE

• However, some more additional operations that can be performed on queue are:

• Make Empty (Q) : Create an empty queue, Q

• Isempty (Q): Returns true if the queue, Q, is empty otherwise false.

• Isfull (Q) : Returns true if the queue, Q, is full otherwise false.

• Size (Q) : Returns the number of items in the queue, Q

• Front (Q) : Return the object that is at the front of the queue without removing

it.

• Traverse (Q) : Visit all the elements stored in the queue, Q

• Search (K,Q) : Search for the location of K in queue, Q

Er. Pralhad Chapagain 59

IMPLEMENTATION OF QUEUE

• Static Implementation (Array Implementation)

• Dynamic Implementation (Linked List

Implementation)

Er. Pralhad Chapagain 60

TYPES OF QUEUE

• Linear Queue or Simple Queue

• Circular Queue

• Double ended Queue (De-Queue)

• Priority Queue : Priority queue is generally implemented using

linked list.

Er. Pralhad Chapagain 61

LINEAR QUEUE

• Enqueue operation will insert an element to queue, at the rear end, by incrementing the array

index.

• Dequeue operation will delete from the front end by incrementing the array index and will

assign the deleted value to a variable.

• Initially front and rear is set to -1.

• The queue is empty whenever rear < front or both the rear and front is equal to -1.

• Total number of elements in the queue at any time is equal to rear-front+1, when implemented

using arrays.

• Below are the few operations in the queue.

Er. Pralhad Chapagain 62

LINEAR QUEUE

Er. Pralhad Chapagain 63

LINEAR QUEUE

Er. Pralhad Chapagain 64

LINEAR QUEUE

Er. Pralhad Chapagain 65

• Note: During The insertion of first element in the queue, we always increment
the front by one.

• If we try to dequeue an element from queue when it is empty, underflow occurs.

• If we try to enqueue an element to queue , overflow occurs when the queue is
full.

LINEAR QUEUE- ALGORITHM FOR QUEUE OPERATIONS

Er. Pralhad Chapagain 66

• Let Q be the arrays of some specified size say MAX. rear and front
are two points for element insertion and deletion.

Inserting an element into QUEUE (Enqueue)

1.If (rear>= MAX-1)
a. Display “Queue Overflow”

b. Exit

2.Else
a. If (front == -1 && rear ==-1) [first time insertion]

b. Front = 0

3.rear =rear +1

4.Input the value to be inserted and assign to variable “data”.

5.Q[rear] = data

6.Exit

LINEAR QUEUE- ALGORITHM FOR QUEUE OPERATIONS

Er. Pralhad Chapagain 67

Deleting an element from QUEUE (Dequeue)

1.If (rear < front or (front == -1 && rear == -1))

a. Display “Queue is empty”

b. Exit

2.Else

a. Data = Q [front]

3.If (front ==rear)

a. front = -1

b. rear = -1

4.Else

a. front = front +1

5.Exit

CIRCULAR QUEUE

Er. Pralhad Chapagain 68

• Suppose a queue has maximum size 5, say 5 elements pushed and 2 elements popped.

• Now if we attempt to add more elements, even though 2 queue cells are free, the elements cannot

be pushed.

• Because in a queue, elements are always inserted at the rear end and hence rear points to last

location of the queue which indicates queue full.

• This limitation can be overcome if we use circular queue.

• In circular queues the elements Q[0], Q[1], Q[2],……, Q[n-1] is represented in a circular fashion.

• A circular queue is one in which the insertion of a new element is done at the very first location

of the queue if the last location at the queue is full.

CIRCULAR QUEUE

Er. Pralhad Chapagain 69

• Suppose Q is a queue array of 6 elements. Enqueue() and Dequeue() operation can be performed

on circular. The following figure will illustrate the same.

• After inserting an element at last location Q[5], the next element will be inserted at the very first

location (i.e., Q[0]) that is circular queue is one in which the first element comes just after the last

element.

CIRCULAR QUEUE

Er. Pralhad Chapagain 70

• At any time the relation will calculate the position of the element to be inserted.

• rear = (rear+1) % MAX [MAX = size]

• After deleting an element from circular queue the position of the front end is

calculated by the relation

• front = (front + 1) % MAX

ALGORITHM FOR CIRCULAR QUEUE

Er. Pralhad Chapagain 71

• Let Q be the arrays of some specified size

say MAX. front and rear are two pointers

where the elements are deleted and

inserted. DATA is the element to be

inserted. Initially front==-1 and rear==-1.

Inserting an element to circular queue:

1.if ((front ==0 && rear ==MAX-1) OR

front =rear+1)

a. Display “ Queue is Full”

b. Exit

2.If (front == -1 && rear == -1)

a. front =0

b. rear = 0

3.else

a. Rear = (rear+1) % MAX

4.Input the value to be inserted and assign

to variable “DATA”

5.Q[rear] = DATA

6.Repeat steps 2 t0 5 if we want to insert

more elements

7.Exit.

ALGORITHM FOR CIRCULAR QUEUE

Er. Pralhad Chapagain 72

Deleting an element from a

circular queue:

1.if (front ==-1 && rear ==-1)

a. Display “ Queue is Empty”

b. Exit

2.Else

a. DATA = Q[front]

3.If (rear==front)

a. front = -1

b. rear = -1

4.Else

a. front = (front + 1) % MAX

5.Repeat steps 1 t0 4 if we want

to delete more elements

6.Exit.

DEQUES

Er. Pralhad Chapagain 73

• A deque is a homogeneous list in which elements can be added or inserted (called enqueue

operation) and deleted or removed from both the ends (which is called dequeue operation).

• That is, we can add a new element at the rear or front end and also we can remove an element

from both front and rear end.

• Hence, it is called double ended Queue.

DEQUES

Er. Pralhad Chapagain 74

• There are two types of deque depending upon the restriction to perform insertion or deletion

operations at the two ends. They are:

Input restricted deque:

• An input restricted deque is a deque, which allows insertion at only one end, rear end, but allows

deletion at both ends, rear and front end of the lists.

Output restricted deque:

• An output restricted deque is a deque, which allows deletion at only one end, front end, but allows

insertion at both ends, rear and front end of the lists.

DEQUES

Er. Pralhad Chapagain 75

• The possible operation performed on deque is : (Deque ADT)

• Add an element at the rear end (insert_rear)

• Add an element at the front end (insert_front)

• Delete an element from the front end (delete_front)

• Delete an element from the rear end (delete_rear)

• Only 1st, 3rd and 4th operations are performed by input-restricted

deque and 1st, 2nd and 3rd operations are performed by output –

restricted deque.

ALGORITHM FOR INSERTING AN ELEMENT IN DEQUES

Er. Pralhad Chapagain 76

• Let Q be the queue of size MAX .

front and rear are two pointers

where the addition and deletion of

elements occurred. Let DATA be the

element to be inserted. Initially front

== -1 and rear == -1.

Insert an element at the rear end of

the deque:

1.If ((front ==0 && rear==MAX-1)

OR (front==rear+1)

a. Display “Queue Full”

b. Exit

2.If (front == -1 && rear == -1)

a. Front =0

b. Rear =0

3.Else

a. Rear=(Rear+1)%MAX

4.Input DATA to be inserted

5.Q[rear] = DATA

6.Exit

ALGORITHM FOR INSERTING AN ELEMENT IN DEQUES

Er. Pralhad Chapagain 77

Insert an element at the front

end of the deque:

1.If ((front ==0 &&

rear==MAX-1) OR

(front==rear+1)

a. Display “Queue Full”

b. Exit

2.If (front == -1 && rear == -1)

a. Front =0

b. Rear =0

3.Else

a. If (front ==0)

i. front=MAX-1

b. else

i. front=front-1

4.Input DATA to be inserted

5.Q[front] = DATA

6.Exit

ALGORITHM FOR DELETING AN ELEMENT IN DEQUES

Er. Pralhad Chapagain 78

• Let Q be the queue of size MAX .

front and rear are two pointers

where the addition and deletion of

elements occurred. Let DATA will

contain the element just deleted.

Initially front == -1 and rear == -1.

Delete an element from the rear end

of the deque:

1.If (front == -1 && rear == -1)

a. Display “Queue Underflow”

b. Exit

2.DATA = Q[rear]

3.If (front == rear)

a. Front = -1

b. Rear = -1

4.If (rear ==0)

a. rear = MAX-1

5. Else

a. rear = rear-1

6.Exit

ALGORITHM FOR DELETING AN ELEMENT IN DEQUES

Er. Pralhad Chapagain 79

Delete an element from the

front end of the deque:

1.If (front == -1 && rear == -1)

a. Display “Queue Underflow”

b. Exit

2.DATA = Q[front]

3.If (front == rear)

a. Front = -1

b. Rear = -1

4.Else

1.Front=(front+1)%MAX

5.Exit

PRIORITY QUEUES

Er. Pralhad Chapagain 80

• Priority queue is a queue where each element is assigned a priority.

• In priority queue, the elements are deleted and processed by following rules.

• An element of higher priority is processed before any element of lower priority

• Two elements with the same priority are processed according to the order in which they were inserted

to the queue.

• For example, Consider a manager who is in process of checking and approving files in a first

come first basis. In between, if any urgent file (with a high priority) comes, he will process the

urgent file next and continue with the other low urgent files.

PRIORITY QUEUES

Er. Pralhad Chapagain 81

• Above figure gives the pictorial representation of priority queue using

arrays after adding 5 elements with its corresponding priorities.

• Here the priorities of data are in ascending order.

• Always we may not be pushing the data in an ascending order.

• From the mixed priority list it is difficult to find the highest priority

element if the priority queue is implemented using arrays.

• It is better to implement the priority queue using linked list where a node

can be inserted at anywhere in the list.

APPLICATION OF QUEUES

Er. Pralhad Chapagain 82

• Round robin techniques for processor, scheduling is implemented using queue.

• Printer server routines (in drivers) are designed using queues.

• All type of customer service type software (e.g. Ticket reservation) are

designed using queue to give proper service to the customers.

• When a resource is shared among multiple consumers. Example includes CPU

scheduling, Disk Scheduling

• Scheduler (e.g. in operating system): maintains a queue of processes awaiting a

slice of machine time

• when data is transferred asynchronously between two processes.

STACK VS QUEUES

Er. Pralhad Chapagain 83

1. A linear list of elements in which deletion can be done from one end (front) and insertion can take place only

at the other end (rear) is known as _____________

a) Queue

b) Stack

c) Tree

d) Linked list

2. The data structure required for Breadth First Traversal on a graph is?

a) Stack

b) Array

c) Queue

d) Tree

3. A queue follows __________

a) FIFO (First In First Out) principle

b) LIFO (Last In First Out) principle

c) Ordered array

d) Linear tree

4. Circular Queue is also known as ________

a) Ring Buffer

b) Square Buffer

c) Rectangle Buffer

d) Curve Buffer

5. If the elements “A”, “B”, “C” and “D” are placed in a queue and are deleted one at a time, in what order will they be

removed?

a) ABCD

b) DCBA

c) DCAB

d) ABDC

6. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is?

a) Queue

b) Circular queue

c) Deque

d) Priority queue

7. A normal queue, if implemented using an array of size MAX_SIZE, gets full when?

a) Rear = MAX_SIZE – 1

b) Front = (rear + 1)mod MAX_SIZE

c) Front = rear + 1

d) Rear = front

8. After performing these set of operations, what does the final list contain?

a) 10 30 10 15

b) 20 30 40 15

c) 20 30 40 10

d) 10 30 40 15

9. Which of the following is not the type of queue?

a) Ordinary queue

b) Single ended queue

c) Circular queue

d) Priority queue

10. In a circular queue, how do you increment the rear end of the queue?

a) rear++

b) (rear+1) % CAPACITY

c) (rear % CAPACITY)+1

d) rear- -

11. What is the term for inserting into a full queue known as?

a) overflow

b) underflow

c) null pointer exception

d) program won’t be compiled

12. What is the time complexity of enqueue operation?

a) O(logn)

b) O(nlogn)

c) O(n)

d) O(1)

13. What does the following Java code do?

a) Dequeue

b) Enqueue

c) Return the front element

d) Return the last element

14. What is the need for a circular queue?

a) effective usage of memory

b) easier computations

c) to delete elements based on priority

d) implement LIFO principle in queues

15. What is the space complexity of a linear queue having n elements?

a) O(n)

b) O(nlogn)

c) O(logn)

d) O(1)

16. In linked list implementation of queue, if only front pointer is maintained, which of the following operation take
worst case linear time?

a) Insertion

b) Deletion

c) To empty a queue

d) Both Insertion and To empty a queue

17. In linked list implementation of a queue, where does a new element be inserted?

a) At the head of link list

b) At the center position in the link list

c) At the tail of the link list

d) At any position in the linked list

18. In linked list implementation of a queue, front and rear pointers are tracked. Which of these pointers will change
during an insertion into a NONEMPTY queue?

a) Only front pointer

b) Only rear pointer

c) Both front and rear pointer

d) No pointer will be changed

19. In linked list implementation of a queue, front and rear pointers are tracked. Which of these pointers will change
during an insertion into EMPTY queue?

a) Only front pointer

b) Only rear pointer

c) Both front and rear pointer

d) No pointer will be change

20. In linked list implementation of a queue, from where is the item deleted?

a) At the head of link list

b) At the center position in the link list

c) At the tail of the link list

d) Node before the tail

21. In linked list implementation of a queue, the important condition for a queue to be empty is?

a) FRONT is null

b) REAR is null

c) LINK is empty

d) FRONT==REAR-1

22. The essential condition which is checked before insertion in a linked queue is?

a) Underflow

b) Overflow

c) Front value

d) Rear value

23. The essential condition which is checked before deletion in a linked queue is?

a) Underflow

b) Overflow

c) Front value

d) Rear value

24.Which of the following is true about linked list implementation of queue?

a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be
removed from end

b) In push operation, if new nodes are inserted at the beginning, then in pop operation, nodes must be removed from
the beginning

c) In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be removed from end

d) In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be removed from
beginning

25. With what data structure can a priority queue be implemented?

a) Array

b) List

c) Heap

d) Tree

26. Which of the following is not an application of priority queue?

a) Huffman codes

b) Interrupt handling in operating system

c) Undo operation in text editors

d) Bayesian spam filter

27. What is the time complexity to insert a node based on key in a priority queue?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

29. What is a dequeue?

a) A queue with insert/delete defined for both front and rear ends of the queue

b) A queue implemented with a doubly linked list

c) A queue implemented with both singly and doubly linked lists

d) A queue with insert/delete defined for front side of the queue

LIST

LINKED LIST

Er. Pralhad Chapagain
94

LIST- INTRODUCTION

• A list is a collection of homogeneous set of elements or objects.

• If the size of list is fixed at compile time and do not grow or shrink at

runtime then it is called static list however if the size of the list is not fixed

at compile time and grow and shrink at runtime then it is called dynamic

list.

• A list is said to be empty when it contains no elements

• The number of elements currently stored is called the length of the list.

• The beginning of the list is called head and the end of the list is called the

tail.

Er. Pralhad Chapagain 95

STATIC IMPLEMENTATION OF LIST

• Static implementation can be implemented using arrays.

• It is very simple method but it has static implementation.

• Once a size is declared, it cannot be change during the program execution.

• It is also not efficient for memory utilization.

• When array is declared, memory allocated is equal to the size of the array.

• The vacant space of array also occupies the memory space.

• In this cases, if we store fewer arguments than declared, the memory is wasted

and if more elements are stored than declared, array cannot be expanded.

• It is suitable only when exact numbers of elements are to be stored.

Er. Pralhad Chapagain 96

SOME COMMON OPERATIONS PERFORMED ON STATIC LIST

• Creating of an array

• Inserting new element at required position

• Deletion of any element

• Modification of any element

• Traversing of an array

• Merging of arrays

Er. Pralhad Chapagain 97

LIST (ARRAY) AS AN ADT

• Let A be an LIST of array implementation and it has n elements then it

satisfied the following operations:

• CREATE (A) : Create an array A

• INSERT (A,X): Insert an element X into an array A in any location

• DELETE (A,X) : Delete an element X from an array A

• MODIFY (A,X,Y) : Modify element X by Y of an array A

• TRAVERSE (A) : Access all elements of an array A

• MERGE (A,B) : Merging elements of A and B into a third array C.

Thus by using a one dimensional array we can perform above operations thus an array

acts as an ADT.

Er. Pralhad Chapagain 98

INSERTION OF AN ELEMENT IN ONE-DIMENSIONAL ARRAY

• Insertion at the end of an array:

• Providing the memory space allocated for the array enough to accommodate

the additional; element can easily do insertion at the end of an array.

• Insertion at the required position

• For inserting the element at required position, element must be moved

downwards to new locations to accommodate the new element and keep the

order of the elements.

• For inserting an element into a linear array insert(a, len, pos, num) where a

is a linear array, len be total number of elements with an array, pos is the

position at which number num will be inserted.
Er. Pralhad Chapagain 99

INSERTION OF AN ELEMENT IN ONE-DIMENSIONAL ARRAY

Algorithm to insert new element in

a list:

1.[initialize the value of i] set i=len-

1

2.Repeat for i= len-1 down to pos

 [shift the elements right by 1

position]

 Set a[i+1] = a [i]

 [end of loop]

3.[insert the element at required

position]

 Set a[pos] = num

4.[reset len] set len=len+1

5.Display the new list of arrays

6.end

Er. Pralhad Chapagain 100

DELETION OF AN ELEMENT FROM ONE-DIMENSIONAL ARRAY

• Deleting an element at the end of an array presents

no difficulties, but deleting element somewhere in

the middle of the array would require to shift all the

elements to fill the space emptied by the deletion of

the element, then the element following it were

moved left by one location.

• num is the item deleted and len is the no of element

in the array. pos is the position from where the data

item is deleted.

Algorithm:

1. Set num = a[pos]

2. Repeat for j= pos to len-1

a. Shift elements 1 position left

b. Set a[j] = a[j+1]

3. Reset len=len-1

4. Display the new list of element of array

5. end

Er. Pralhad Chapagain 101

DYNAMIC IMPLEMENTATION OF LIST

• In static implementation of memory allocation, we cannot alter (increase

or decrease) the size of an array and the memory allocation is fixed.

• So we have to adopt an alternative strategy to allocate memory only

when it is required.

• There is a special data structure called linked list that provides a more

flexible storage system and it does not required the use of array.

• The advantage of a list over an array occurs when it is necessary to insert

or delete an element in the middle of a group of other elements.

Er. Pralhad Chapagain 102

LINKED LIST

• A linked list is a linear collection of specially designed data structure, called nodes,

linked to one another by means of pointer.

• Each node is divided into 2 parts: the first part contains information of the element and

the second part contains address of next node in the link list.

• The left part of each node contains the data items and the right part represents the

address of the next node.

• The next pointer of the last node contains a special value, called the NULL pointer,

which does not point to any address of the node.

Er. Pralhad Chapagain 103

LINKED LIST

• That is NULL pointer indicates the end of linked list.

• START pointer will hold the address of the 1st node in the list

START = NULL if there is no list (i.e. NULL list or empty list)

REPRESENTATION OF LINKED LIST:

Er. Pralhad Chapagain 104

ADVANTAGES AND DISADVANTAGES OF LINKED LIST

ADVANTAGES:

• Link list are dynamic data structure. That is they can grow or shrink during the execution of a program.

• Efficient memory utilization: in linked list memory is not pre-allocated. Memory is allocated whenever it

is required. And it is deallocated when it is not needed.

• Insertion and deletion are easier and efficient. Linked list provides flexibility in inserting a data item at a

specified position and deletion of a data item from the given position.

• Many complex applications can be easily carried out with linked list.

DISADVANTAGES:

• More memory: to store an integer number, a node with integer data and address field is allocated. That is

more memory space is needed.

• Access to any arbitrary data item is little bit cumbersome and also time consuming.

Er. Pralhad Chapagain 105

OPERATIONS ON LINKED LIST

The primitive operations performed on linked list is as follows:

• Creation :

• It is used to create a linked list.

• Once a linked list is created with one node, insertion operation can be used to add more elements in a node.

• Insertion:

• It is used to insert a new node at any specified location in the linked list.

• A new node may be inserted

• At the beginning of the linked list

• At the end of the linked list

• At any specified position in between in a linked list

• Deletion:

• it is used to delete an item (or node) from the linked list.

Er. Pralhad Chapagain 106

OPERATIONS ON LINKED LIST

• A node may ne deleted from the

• Beginning of a linked list

• End of a linked list

• Specified location of the linked list

• Traversing:

• It is the process of going through all the nodes from one end to another end of a

linked list.

• Concatenation:

• It is the process appending the second list to the end of the first list.

• Searching:

• It is the process of finding the location of searched item.

Er. Pralhad Chapagain 107

TYPES OF LINKED LIST

• Following are the types of Linked list depending upon the

arrangements of the nodes.

• Singly Linked List

• Doubly Linked List

• Circular Linked List

• Circular singly linked list

• Circular doubly linked list.

Er. Pralhad Chapagain 108

SINGLY LINKED LIST

• All the nodes in a singly linked list are arranged sequentially by linking with

pointer.

• A singly linked list can grow or shrink, because it is a dynamic data structure.

• The following figure explains the different operations on singly linked list.

Er. Pralhad Chapagain 109

SINGLY LINKED LIST

Er. Pralhad Chapagain 110

ALGORITHM FOR INSERTION A NODE IN SLL

• Suppose START is the first position in linked list. Let DATA be the

element to be inserted in the new node. POS is the position where the new

node is to be inserted. TEMP is a temporary pointer to hold the node

address.
Er. Pralhad Chapagain 111

ALGORITHM FOR INSERTION A NODE IN SLL

Insert a Node at the beginning of Linked List:

1.Input DATA to be inserted

2.Create a NewNode

3.NewNode→ DATA = DATA

4.If(START == NULL)

a. NewNode→next = NULL

5.Else

a. NewNode→next = START

6.START = NewNode

7.Exit
Er. Pralhad Chapagain 112

ALGORITHM FOR INSERTION A NODE IN SLL

Insert a Node at the end of

Linked List:

1.Input DATA to be inserted

2.Create a NewNode

3.NewNode→ DATA = DATA

4.NewNode→next = NULL

5.If(START == NULL)

a. START = NewNode

6.Else

a. TEMP = START

b. While (TEMP→ next!=NULL)

i. TEMP=TEMP→next

c.TEMP→next = NewNode

7.Exit

Er. Pralhad Chapagain 113

ALGORITHM FOR INSERTION A NODE IN SLL

Insert a Node at any specified

position of Linked List:

1.Input DATA and POS to be

inserted

2.Initialize TEMP=START and i=0

3.Repeat the step 3 while (i<POS-1)

a. TEMP = TEMP→ next

b. If(TEMP ==NULL)

a. Display “Node in the list less than the

position”

b. Exit

c. i=i+1

4.Create a NewNode

5.NewNode→ DATA =DATA

6.NewNode → next=TEMP→next

7.TEMP→next =NewNode

8.Exit

Er. Pralhad Chapagain 114

ALGORITHM FOR DISPLAY ALL NODES

• Suppose START is the address of the first node in the linked list.

1.If (START ==NULL)

a. Display “The list is Empty”

b. Exit

2.Initialize TEMP = START

3.Repeat the step 4 and 5 until (TEMP==NULL)

4.Display “TEMP→DATA”

5.TEMP=TEMP→next

6.Exit

Er. Pralhad Chapagain 115

ALGORITHM FOR DELETING A NODE

• Suppose START is the first

position in linked list. Let DATA

be the element to be deleted.

TEMP, HOLD is a temporary

pointer to hold the node address.

Deletion from the beginning:

1.If (START==NULL)

a. Display “List is empty”

b. exit

2. Else

a. HOLD=START

b. START=START→next

c. Display the deleted node as

HOLD→DATA

d. Set free the node HOLD, which is

deleted

e. Exit

Er. Pralhad Chapagain 116

ALGORITHM FOR DELETING A NODE

Deletion from the end:

1.If (START==NULL)

a. Display “List is empty”

b. exit

2. Else IF (START→NEXT ==NULL)

a. HOLD=START

b. START =NULL

c. Display the deleted node as

HOLD→DATA

d. Set free the node HOLD, which is deleted

e. Exit

a. ELSE

a. HOLD = START

b. WHILE(HOLD→next!=NULL)

a. TEMP=HOLD

b. HOLD=HOLD→next

c. TEMP→NEXT=NULL

d. Display the deleted node as

HOLD→DATA

e. Set free the node HOLD, which is deleted

f. Exit

Er. Pralhad Chapagain 117

ALGORITHM FOR DELETING A NODE

Deletion from the given position:

1. Input the position POS from where data is to

be deleted

2. Set i=0

3. If (START==NULL)

a. Display “The list is empty”

b. Exit

4. Else

a. If (POS==0)

i. HOLD = START

ii. START=START→next

iii. Display deleted data as HOLD→DATA

iv. Set free the node HOLD, which is deleted

v. Exit

Er. Pralhad Chapagain 118

ALGORITHM FOR DELETING A NODE

b. Else

i. HOLD=START

ii. WHILE(i<POS)

i. TEMP =HOLD

ii. HOLD = HOLD→next

iii. IF(HOLD==NULL)

i. Display Position not found

ii. Exit

iv. i=i+1

iii. TEMP→next=HOLD→next

iv. Display deleted data as

HOLD→DATA

v. Set free the node HOLD, which is

deleted

vi. Exit

Er. Pralhad Chapagain 119

ALGORITHM FOR SEARCHING A NODE

• Suppose START is the address of the first

node in the linked list and DATA is the

information to be searched. After searching, if

the DATA is found, POS will contain the

corresponding position in the list.

1. Input the DATA to be searched

2. Initialize TEMP = START; POS =0

3. Repeat the step 4, 5 and 6 until (TEMP ==

NULL)

4. If (TEMP → DATA ==DATA)

a. Display “The data is found at POS”

b. Exit

5. TEMP = TEMP→next

6. POS = POS+1

7. If (TEMP == NULL)

a. Display “The data is not found in the list”

8. Exit

Er. Pralhad Chapagain 120

STACK USING LINKED LIST

• The following figures shows that the implementation of stack using

linked list.

Er. Pralhad Chapagain 121

STACK USING LINKED LIST

Algorithm for PUSH operation:

• Suppose TOP is a pointer, which is pointing towards the topmost element of

the stack. TOP is NULL when the stack is empty. DATA is the data item to be

pushed.

1.Input the DATA to be pushed

2.Create a new Node

3.NewNode→DATA=DATA

4.NewNode→next = TOP

5.TOP=NewNOde

6.exit
Er. Pralhad Chapagain 122

STACK USING LINKED LIST

Algorithm for POP operation:

• Suppose TOP is a pointer, which is pointing towards the topmost element of the stack. TOP is

NULL when the stack is empty. TEMP is pointer variable to hold any nodes address. DATA is

the information on the node which is just deleted.

1. If (TOP ==NULL)

a. Display “The stack is empty”

2. Else

a. TEMP = TOP

b. Disply “The popped elemet TOP→DATA”

c. TOP = TEMP→Next

d. TEMP → next = NULL

e. Free the TEMP node

3. Exit
Er. Pralhad Chapagain 123

QUEUE USING LINKED LIST

The following figure shows that the implementation issues of Queue

using linked list.

Er. Pralhad Chapagain 124

ALGORITH FOR ENQUEUE AN ELEMENT INTO A QUEUE

• REAR is a pointer in queue where the new elements are added. FRONT is a pointer, which is

pointing to the queue where the elements are popped. DATA is an element to be pushed.

1. Input the DATA element to be pushed

2. Create a New Node

3. NewNode → DATA = DATA

4. NewNode → next = NULL

5. If (REAR == NULL)

a. REAR = NewNode

b. FRONT = NewNode

6. Else, REAR→next = NewNOde

7. Rear=NewNode

8. Exit
Er. Pralhad Chapagain 125

ALGORITH FOR DEQUEUE AN ELEMENT FROM A QUEUE

• REAR is a pointer in queue where the new elements are added. FRONT is a pointer,

which is pointing to the queue where the elements are popped. DATA is an element

popped from the queue.

1.If (FRONT == NULL)

a. Display “The queue is empty”

2.Else

a. Display “ the popped element is FRONT → DATA”

b. If (FRONT != REAR)

i. FRONT = FRONT → Next

c. Else,

i. Front = NULL

3. exit

Er. Pralhad Chapagain 126

ADVANTAGE AND DISADVANTAGE OF SINGLY LINKED LIST

Advantages:

• Accessibility of a node in the forward direction is easier

• Insertion and deletion of node are easier

Disadvantages:

• Can insert only after a referenced node

• Removing node requires pointer to previous node

• Can traverse list only in the forward direction.

Er. Pralhad Chapagain 127

DOUBLY LINKED LIST

• A doubly linked list is one in which all nodes are linked together by multiple links which help in

accessing both the successor (next) and predecessor (previous) node for any arbitrary node within the

list.

• Every nodes in the doubly linked list has three fields: LeftPointer (Prev), RightPointer (Next) and DATA

• Prev will point to the node in the left side i.e. Prev will hold the address of the previous node.

• Next will point to the node in the right side i.e. Next will hold the address of next node.

• DATA will store the information of the node.

Er. Pralhad Chapagain 128

 REPRESENTATION OF DOUBLY LINKED LIST

Er. Pralhad Chapagain 129

ALGORITHM FOR INSERTING A NODE INTO DLL

• Suppose START is the first position

in linked list. Let DATA be the

element to be inserted in the new

node. TEMP is a temporary pointer

to hold the node address and POS is

the position where the NewNode is

to be inserted.

At the beginning:

1.Input DATA element to be inserted

2.Create NewNode

3.NewNode → DATA =DATA

4.NewNode→prev = NULL

5.If (SART == NULL)

a. NewNode → next = NULL

6.Else

a. NewNode→next = START

b. START→prev = NewNode

7.Start=NewNode

8.exit

Er. Pralhad Chapagain 130

ALGORITHM FOR INSERTING A NODE INTO DLL

At the end:

1.Input DATA element to be

inserted

2.Create NewNode

3.NewNode → DATA =DATA

4.NewNOde→next = NULL

5.If (SART == NULL)

a. NewNode→prev = NULL

b.START=NewNode

6.Else

a. TEMP = START

b.While (TEMP→next != NULL)

a. TEMP = TEMP → next

c. NewNode→ prev = TEMP

d.TEMP→ next= NewNode

7.exit

Er. Pralhad Chapagain 131

ALGORITHM FOR INSERTING A NODE INTO DLL

At the specified location:

1.Input DATA and POS

2.Create NewNode

3.NewNode → DATA =DATA

4.TEMP = START; i=1

5.while((i< POS-1) &&

(TEMP!=NULL))

a. TEMP = TEMP→ next ; i=i+1

6.If ((TEMP !=NULL) && (i==POS-

1))

a. NewNode→ prev = TEMP

b. NewNOde→next = TEMP→next

c. (TEMP→ next)→prev = NewNode

d. TEMP→next = NewNode

7.Else

a. Display “Position not found”

8.exit

Er. Pralhad Chapagain 132

ALGORITHM FOR DELETING A NODE FROM DLL

• Suppose START is the address of

the first node in the linked list. Let

DATA is the number to be deleted.

TEMP and PTR is the temporary

pointer to hold the address of the

node.

Deletion From the Beginning:

1.IF (START==NULL)

1.Display “List is empty”

2.Exit

2.Else,

a. TEMP = START

b.START = START→ Next

c. START → Prev = NULL

d.Display the deleted data as

TEMP→DATA

e. Free the TEMP

f. Exit

Er. Pralhad Chapagain 133

ALGORITHM FOR DELETING A NODE

Deletion from the end:

1.If (START==NULL)

a. Display “List is empty”

b. exit

2. Else IF (START→NEXT ==NULL)

a. HOLD=START

b. START =NULL

c. Display the deleted node as

HOLD→DATA

d. Set free the node HOLD, which is deleted

e. Exit

3. ELSE

a. HOLD = START

b. WHILE(HOLD→next!=NULL)

a. TEMP=HOLD

b. HOLD=HOLD→next

c. TEMP→next=NULL

d. HOLD→prev=NULL

e. Display the deleted node as

HOLD→DATA

f. Set free the node HOLD, which is deleted

g. Exit

Er. Pralhad Chapagain 134

ALGORITHM FOR DELETING A NODE

Deletion from the given position:

1. Input the position POS from where data is to

be deleted

2. Set i=0

3. If (START==NULL)

a. Display “The list is empty”

b. Exit

4. Else

a. If (POS==0)

i. HOLD = START

ii. START=START→next

iii. START→prev =NULL

iv. HOLD→next =NULL

v. Display deleted data as HOLD→DATA

vi. Set free the node HOLD, which is deleted

vii. Exit

Er. Pralhad Chapagain 135

ALGORITHM FOR DELETING A NODE

b. Else

i. HOLD=START

ii. WHILE(i<POS)

i. TEMP =HOLD

ii. HOLD = HOLD→next

iii. IF(HOLD==NULL)

i. Display Position not found

ii. Exit

iv. i=i+1

iii. TEMP→next=HOLD→next

iv. (HOLD→next)→prev=TEMP

v. Display deleted data as

HOLD→DATA

vi. HOLD→next =NULL

vii. HOLD→prev=NULL

viii.Set free the node HOLD, which is

deleted

ix. Exit

Er. Pralhad Chapagain 136

CIRCULAR LINKED LIST

• A circular linked list is one, which has no beginning and no end.

• A singly linked list can be made a circular linked list by simply storing the address of the very

first node in the linked field of the last node.

• Circular linked lists also make our implementation easier, because they eliminate the boundary

conditions associated with the beginning and end of the list, thus eliminating the special case

code required to handle these boundary conditions.

Er. Pralhad Chapagain 137

INSERTION ALGORITHM INTO CIRCULAR LINKED LIST

• Suppose START is the first

position in linked list. Let DATA

be the element to be inserted in

the new node. LAST indicated the

last node.

At the beginning:

1.Create a New Node

2.NewNOde→DATA = DATA

3.If (START == NULL)

a. NewNode→next = NewNode

b. START = NewNode

c. LAST = NewNode

4.Else

a. NewNode → next = START

b.START = NewNode

c. LAST → next = NewNode

5.Exit

Er. Pralhad Chapagain 138

INSERTION ALGORITHM INTO CIRCULAR LINKED LIST

At the end:

1.Create a New Node

2.NewNOde→DATA = DATA

3.If (START == NULL)

a. NewNode→next = NewNode

b. START = NewNode

c. LAST = NewNode

4.Else

a.LAST → next = NewNode

b.LAST = NewNode

c.LAST → next = START

5.Exit

Er. Pralhad Chapagain 139

DELETION ALGORITHM FROM CIRCULAR LINKED LIST

At the beginning:

1. Declare a temporary node , PTR

2. If (START == NULL)

a. Display “ Empty Circular queue”

b. Exit

3. PTR = START

4. START = START →next

5. Print , element deleted is PTR→ DATA

6. LAST→next = START

7. Free PTR

8. Exit

Er. Pralhad Chapagain 140

DELETION ALGORITHM FROM CIRCULAR LINKED LIST

At the end:

1.Declare a temporary node ,

PTR

2.If (START == NULL)

a.Display “ Empty Circular queue”

b.Exit

3.PTR = START

4.While (PTR! = LAST)

a.PTR1 = PTR

b. PTR = PTR →next

5.Print , element deleted is

PTR→ DATA

6.LAST = PTR1

7.LAST→next = START

8.Free PTR

Er. Pralhad Chapagain 141

APPLICATION OF LINKED LIST IN COMPUTER SCIENCE

• Implementation of stacks and queues

• Implementation of graphs : Adjacency list representation of graphs is

most popular which is uses linked list to store adjacent vertices.

• Dynamic memory allocation : We use linked list of free blocks.

• Maintaining directory of names

• Performing arithmetic operations on long integers

• Manipulation of polynomials by storing constants in the node of linked

list

• representing sparse matrices

Er. Pralhad Chapagain 142

APPLICATION OF LINKED LIST IN REAL WORLD

• Image viewer – Previous and next images are linked, hence can be

accessed by next and previous button.

• Previous and next page in web browser – We can access previous

and next url searched in web browser by pressing back and next

button since, they are linked as linked list.

• Music Player – Songs in music player are linked to previous and

next song. you can play songs either from starting or ending of the

list.

Er. Pralhad Chapagain 143

1. A linear collection of data elements where the linear node is given by means of pointer is called?

a) Linked list

b) Node list

c) Primitive list

d) Unordered list

2. Consider an implementation of unsorted singly linked list. Suppose it has its representation with a head

pointer only. Given the representation, which of the following operation can be implemented in O(1) time?

a) I and II

b) I and III

c) I, II and III

d) I, II and IV

3. In linked list each node contains a minimum of two fields. One field is data field to store the data second field

is?

a) Pointer to character

b) Pointer to integer

c) Pointer to node

d) Node

4. What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is

initially pointing to the head of the list?

a) O(1)

b) O(n)

c) θ(n)

d) Both O(n) and θ(n)

5. What would be the asymptotic time complexity to insert an element at the front of the linked list (head is

known)?

a) O(1)

b) O(n)

c) O(n2)

d) O(n3)

6. What would be the asymptotic time complexity to find an element in the linked list?

a) O(1)

b) O(n)

c) O(n2)

d) O(n4)

7. What would be the asymptotic time complexity to insert an element at the second position in the linked list?

a) O(1)

b) O(n)

c) O(n2)

d) O(n4)

8. Consider the following definition in c programming language. Which of the following c code is used to create

new node?

a) ptr = (NODE*)malloc(sizeof(NODE));

b) ptr = (NODE*)malloc(NODE);

c) ptr = (NODE*)malloc(sizeof(NODE*));

d) ptr = (NODE)malloc(sizeof(NODE));

9. What kind of linked list is best to answer questions like

“What is the item at position n?”

a) Singly linked list

b) Doubly linked list

c) Circular linked list

d) Array implementation of linked list

10. Linked list is considered as an example of ___________ type of memory allocation.

a) Dynamic

b) Static

c) Compile time

d) Heap

11. In Linked List implementation, a node carries information regarding ___________

a) Data

b) Link

c) Data and Link

d) Node

12. Linked list data structure offers considerable saving in _____________

a) Computational Time

b) Space Utilization

c) Space Utilization and Computational Time

d) Speed Utilization

13. Which of the following points is/are not true about Linked List data structure when it is compared with an

array?

a) Arrays have better cache locality that can make them better in terms of performance

b) It is easy to insert and delete elements in Linked List

c) Random access is not allowed in a typical implementation of Linked Lists

d) Access of elements in linked list takes less time than compared to arrays

14. What does the following function do for a given Linked List with first node as head?

a) Prints all nodes of linked lists

b) Prints all nodes of linked list in reverse order

c) Prints alternate nodes of Linked List

d) Prints alternate nodes in reverse order

15. Given pointer to a node X in a singly linked list. Only one pointer is given, pointer to head node is not

given, can we delete the node X from given linked list?

a) Possible if X is not last node

b) Possible if size of linked list is even

c) Possible if size of linked list is odd

d) Possible if X is not first node

16. You are given pointers to first and last nodes of a singly linked list, which of the following operations are

dependent on the length of the linked list?

a) Delete the first element

b) Insert a new element as a first element

c) Delete the last element of the list

d) Add a new element at the end of the list

17. In the worst case, the number of comparisons needed to search a singly linked list of length n for a given

element is?

a) log2 n

b) n⁄2

c) log2 n – 1

d) n

18. Which of the following is not a disadvantage to the usage of array?

a) Fixed size

b) There are chances of wastage of memory space if elements inserted in an array are lesser than the allocated

size

c) Insertion based on position

d) Accessing elements at specified positions

19. What is the time complexity of inserting at the end in dynamic arrays?

a) O(1)

b) O(n)

c) O(logn)

d) Either O(1) or O(n)

20. Which of these is not an application of a linked list?

a) To implement file systems

b) For separate chaining in hash-tables

c) To implement non-binary trees

d) Random Access of elements

21. Which of the following is false about a doubly linked list?

a) We can navigate in both the directions

b) It requires more space than a singly linked list

c) The insertion and deletion of a node take a bit longer

d) Implementing a doubly linked list is easier than singly linked list

22. What is the worst case time complexity of inserting a node in a doubly linked list?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(1)

23. What differentiates a circular linked list from a normal linked list?

a) You cannot have the ‘next’ pointer point to null in a circular linked list

b) It is faster to traverse the circular linked list

c) In a circular linked list, each node points to the previous node instead of the next node

d) Head node is known in circular linked list

24. Which of the following application makes use of a circular linked list?

a) Undo operation in a text editor

b) Recursive function calls

c) Allocating CPU to resources

d) Implement Hash Tables

25. Which of the following is false about a circular linked list?

a) Every node has a successor

b) Time complexity of inserting a new node at the head of the list is O(1)

c) Time complexity for deleting the last node is O(n)

d) We can traverse the whole circular linked list by starting from any point

RECURSION

Er. Pralhad Chapagain
153

INTRODUCTION

• Recursion is the powerful technique to write repeatable logic.

• Recursion is defined by implementing function.

• A function said to be recursive is it calls again and again with reduced input and

has a base condition to stop the process.

• The basic idea behind recursion is to break a problem into smaller version of

itself and then build up a solution for entire problem.

• A recursive definition consists of two parts:

• Identifying Base / Ground/ Anchor case:

• It is a terminating condition for the problem while designing a recursive function.

• Identifying recursive/ inductive step:

• Each time the function call itself, it must be close to the base case.

Er. Pralhad Chapagain 154

INTRODUCTION

Example 1:

• Consider F(n) which find the sum of first n natural number. Mathematically the function can be

defined as:

F (n) = 1+2+3+4+5+………..+n

• Now recursive definition of this function can be given as:

Put n = 1, F (1) = 1

 n = 2, F (2) = 1 + 2 = F(1) +2

 n=3, F(3) = 1+ 2+ 3 = F(2) + 3

 n=N, F(N) = F(N-1) + N

i.e. F(N)= ቐ
1

𝐹 𝑁 − 1 + 𝑁

Er. Pralhad Chapagain 155

Note: So, using this recursive function

we can generate a sequence of numbers

1,3,6,10,15,…. etc .which includes the

sum of first 1,2,3,4,5,…. Natural

numbers.

If n>1 (Inductive step)

If n=1 (Base Case)

INTRODUCTION

Example 2:

• Consider F(n) which find the factorial of number n.

• Now recursive definition of this function can be given as:

Put n=0, F(0) =1

 n = 1, F (1) = 1*1 = 1*F(0)

 n = 2, F (2) = 2*1 = 2*F(1)

 n=3, F(3) = 3*2*1 = 3*F(2)

 n=N, F(N) = N*F(N-1)

i.e. F(N)= ቐ
1

𝑁 ∗ 𝐹 𝑁 − 1

Er. Pralhad Chapagain 156

If n=0 (Base Case)

If n>0 (Inductive step)

Note: So, using this recursive function

we can generate a sequence of numbers

1,1,2,6,24,…. etc .which includes the

FACTORIAL OF 0,1,2,3,4,5,…. .

TYPES OF RECURSION

• Direct recursion and Indirect Recursion

• A recursion is said to be direct if a function calls itself

• Example:

• A function is said to be indirect recursion if it contains a call to another

function which ultimately call it.

• Example:

Er. Pralhad Chapagain 157

Public void abc()

{

 abc();

}

Public void abc()

{

 xyz();

}

Public int xyz()

{

 abc();

}

TYPES OF RECURSION

• Tail recursion and Non Tail Recursion

• A recursion is said to be tail recursion if there are no pending operation to be performed on

return from the recursive call, otherwise it is called non tail recursion.

• Example:

• Algorithm 1 is non tail recursion because it has pending operation i.e. multiplication to be

performed on the return from each recursive call, but algorithm 2 is tail recursive since no

such pending operation needs to be performed from each recursive call.

Er. Pralhad Chapagain 158

Public int fact(int n)

{

 if (n==0) return 1;

 return (n * fact (n-1));

}

Algorithm 1 Algorithm 2

Public int fact(int n, int res)

{

 if (n==0) return res;

 return fact (n-1, n*res);

}

TYPES OF RECURSION

• Nested Recursion:

• A recursion is said to be nested recursion if a function is not only defined in terms of itself,

but also is used as one of the parameters.

• So the above example, the recursive method have recursive call inside recursive function,

so it is nested recursion.

Er. Pralhad Chapagain 159

Public int H(int n)

{

 if (n==0) return 0;

 else if (n>4) return n;

 else return (H(2+H(2n)));

}

TYPES OF RECURSION

• Excessive Recursion:

• A recursion is said to be excessive recursion if the price for using recursion is slowing down execution

time and storing on the run-time stack more things than required in a non –recursive approach.

• If the recursion is too deep then we may run out of stack.

• Example: a recursive function for generating sequence of Fibonacci terms.

• e. F(N)= ቐ

𝑛

𝑓𝑖𝑏 𝑛 − 2 + 𝑓𝑖𝑏 𝑛 − 1

Er. Pralhad Chapagain 160

Int fib (int n)

{

 if (n<2) return n;

 else return (fib (n-2) + fib(n-1));

}

If n<2

otherwise

TYPES OF RECURSION

• Find the Fib(6):

Er. Pralhad Chapagain 161

TYPES OF RECURSION

• Find the Fib(6):

Er. Pralhad Chapagain 162

Fib(6) = fib(4) + fib (5)

 =fib(2) + fib(3) + fib(5)

 =fib(0) + fib(1) + fib(3) +fib(5)

 =0+1+fib(3)+ fib(5)

 =1 + fib(1) + fib(2) + fib (5)

 =1+1+fib(0) + fib(1)+ fib(5)

 =2+0+1+fib(5)

 =3 + fib(3) + fib(4)

 =3 + fib (1) + fib (2) + fib(4)

 =3 +1 + fib(2) + fib (4)

 =4 + fib (0) + fib (1) + fib (4)

 =4+0+1+fib(4)

=5+fib(4)

=5+ fib(2) + fib(3)

=5 + fib(0) + fib(1) + fib(3)

=5 + 0 + 1+fib(3)

=6 + fib(3)

=6+ fib(1) + fib(2)

=6 + 1+ fib(2)

=7+fib (2)

=7+ fib(0) + fib(1)

=7 + 0+1

8

TYPES OF RECURSION

• So for computing 6th term, we have to make call to fib() for 25 times

.

• For each call it must make use of some memory resources to make

room for the stack frame.

• So, if the recursion is deep, then say fib(1000), then we may run out

of memory.

• So it is usually best to develop iterative algorithm while working

with large number.

Er. Pralhad Chapagain 163

ADVANTAGES AND DISADVANTAGES OF RECURSION

• Advantages:

• We can create simple and easy version of programs using recursion

• Some specific application are meant for recursion such as binary tree

traversal, tower of Hanoi etc.

• Disadvantages:

• It occupies more memory because of implementation of stack

• It consumes more time to get desired result because they uses calls.

• The computer may run out of memory if proper precautions are not taken.

Er. Pralhad Chapagain 164

APPLICATIONS OF RECURSION

• It is used to calculate factorial of a given number.

• It is used to solve TOH problem

• It is used to translate infix expression into postfix expression

• It is used to check validity of expression

• It is used to calculate term in Fibonacci series.

Er. Pralhad Chapagain 165

ITERATIVE VS RECURSION

Iteration Recursion

1. It is the process of executing a group of statements

repeatedly until some specified condition is satisfied.

It is the technique of defining something in term of

itself.

2. It uses looping so the steps involved are

initialization. Condition, execution and update.

2. The steps involved in recursive procedure are

identifying base case and identifying recursive step.

3. Iteration executes very fast and consumes less

memory and it can be easy.

Recursion consumes more time to execute and

consumes a lots of memory.

4. There are some application in which iteration is

not best suited such as TOH, tree traversal as

iterative function are difficult to design and take

more programming time.

4. There are some applications in which recursion is

best suited for designing algorithms such as TOH,

tree traversal as recursive function are more efficient

and can be understood easily.

5. Any recursive problem can be solved iteratively. 5. Not all problem have recursive solution

Er. Pralhad Chapagain 166

ITERATIVE VS RECURSION

Iteration Recursion

6. Example:

Iterative solution for finding factorial of n number

Int fact (int n)

{

 If (n==0) return 1;

 Prod =1;

 For (int i=n; i>=1; i--)

 {

 Prod=prod*i;

 }

 Return prod;

}

6. Example:

Recursive solution for finding factorial of n number

Int fact (int n)

{

 if (n==0) return 1;

 return (n*fact(n-1));

}

Er. Pralhad Chapagain 167

TOWER OF HANOI

• Tower of Hanoi is a classical problem, which consists of N different sized disc and three

towers over which these disc can be mounted.

• The problem of TOH is to move disc from one tower to another with the help of

temporary tower.

• If we have three towers A, B and C, all the n disks are mounted on tower A in such a

way that a larger disc is always below a smaller one then we have to move disc from

tower A to tower C with the help of temporary tower B.

• The condition for playing this game are:

1.We can move only one disc from one tower to another at a time

2.A larger disc can't be placed on the smaller one.

3.One and only one extra tower could be used for temporary storage of discs.

Er. Pralhad Chapagain

168

TOWER OF HANOI

• In general, the solution to TOH problem requires 2N -1 moves of disc, where N is the number of disc.

• Example: The solution to TOH problem for n=3 is shown in figure below.

Er. Pralhad Chapagain

169

So for n=3, the steps to move disk involves:

1. A to C

2. A to B

3. C to B

4. A to C

5. B to A

6. B to C

7. A to C

TOWER OF HANOI- ALGORITHM

• Let us assume that we have N disc and three towers named source, temp and

destination. Now the algorithm for solution to TOH problem is

1. if (N==1)

a. Move a disc from source to destination

b. Exit

2.Move upper N-1 disc from source to temp using destination as temporary

 Move (N-1, Source, destination, temp)

3.Move largest disc from source to destination

4.Move upper N-1 disc from temp to destination using source as temporary

 Move (N-1, temp, source, destination)

5.Exit

Er. Pralhad Chapagain

170

TOWER OF HANOI

Simpler statement of iterative

solution:

• Alternating between the smallest and

the next smallest disc, follow the steps

for appropriate case:

1.For an even number of disc:

• Make the legal move between pegs A and

B

• Make the legal move between pegs A and

C

• Make the legal move between pegs C and

B

• Repeat until complete

2.For an odd number of disc:

• Make the legal move between pegs A and

C

• Make the legal move between pegs A and

B

• Make the legal move between pegs C and

B

• Repeat until complete

Er. Pralhad Chapagain

171

VALIDITY OF EXPRESSION

• A statement generally have the following delimiters: parentheses “(“

and “)”, square brackets “[“ and “]”, curly brackets “{“ and “}”, and

comment delimiters “/*” and “*/”.

• A statement is said to be valid for correct matching of delimiters if:

• The number of left delimiters is equal to right delimiters

• Each right delimiters is preceded by matching left delimiter.

• Example: {(A+B)-(C*D}} is invalid

 {(A+B)-(C*D)} is valid

Er. Pralhad Chapagain

172

ALGORITHM FOR VALIDITY OF EXPRESSION

1. Scan the elements from left to right until the end of statement is encountered.

2. If the scanned element is

a. (or { or [→ PUSH it onto the stack

b. / → scan the next character, if this character is * skip all character until */ is found and report an error if the

end of statement is reached before */ is reached.

c.) or } or] → POP the left delimiter from the top of stack

i. Check if popped left delimiter match the right delimiter, if it doesn’t match then display “ invalid statement” and exit.

ii. If during the attempt of POP operation, stack is found to be empty the display “Invalid statement” and exit.

d. Other character→ ignore them

3. If the scanned element is the end of statement and stack doesn’t get empty then display

“Invalid statement” and exit.

4. Otherwise, display “Valid statement” and exit

Er. Pralhad Chapagain

173

EXAMPLE OF VALIDITY OF EXPRESSION

Er. Pralhad Chapagain

174

Valid statement

1.

EXAMPLE OF VALIDITY OF EXPRESSION

2. {(A+B)-(C*D)}]

Er. Pralhad Chapagain

175 Scanned symbol Stack

{ {

({ (

A { (

+ { (

B { (

) {

- {

({ (

C { (

* { (

D { (

) {

} Empty

]

Since during attempt to pop operation,

stack is found to be empty, so it is

invalid statement

Practice question:

1. {(A+B)-(C*D})

2. S=T[5] + U/(V*(W+Y));

1. What will be the output of the following C code?

a) 24

b) 4

c) 12

d) 10

2. The data structure used to implement recursive function calls _____________

a) Array

b) Linked list

c) Binary tree

d) Stack

3. In the absence of a exit condition in a recursive function, the following error is given __________

a) Compile time error

b) Run time error

c) Logical error

d) No error

4. What will be the output of the following C code?

a) ++++2

b) +++++2

c) +++++

d) 2

5. What will be the output of the following C code?

a) 10

b) 80

c) 30

d) Error

6. The optimal data structure used to solve Tower of Hanoi is _________

a) Tree

b) Heap

c) Priority queue

d) Stack

4

5

7. Select the appropriate code for the recursive Tower of Hanoi problem.(n is the number of disks)

8. Which among the following is not a palindrome?

a) Madam

b) Dad

c) Malayalam

d) Maadam

9. Which data structure can be used to test a palindrome?

a) Tree

b) Heap

c) Stack

d) Priority queue

10. Recursion is a method in which the solution of a problem depends on ____________

a) Larger instances of different problems

b) Larger instances of the same problem

c) Smaller instances of the same problem

d) Smaller instances of different problems

11. Which of the following problems can’t be solved using recursion?

a) Factorial of a number

b) Nth fibonacci number

c) Length of a string

d) Problems without base case

12. Recursion is similar to which of the following?

a) Switch Case

b) Loop

c) If-else

d) if elif else

13. In recursion, the condition for which the function will stop calling itself is ____________

a) Best case

b) Worst case

c) Base case

d) There is no such condition

14. Which of the following statements is true?

a) Recursion is always better than iteration

b) Recursion uses more memory compared to iteration

c) Recursion uses less memory compared to iteration

d) Iteration is always better and simpler than recursion

15. What will happen when the below code snippet is executed?

a) The code will be executed successfully and no output will be generated

b) The code will be executed successfully and random output will be generated

c) The code will show a compile time error

d) The code will run for some time and stop when the stack overflows

16. Suppose the first fibonnaci number is 0 and the second is 1. What is the sixth fibonnaci number?

a) 5

b) 6

c) 7

d) 8

17. Which of the following is not a fibonnaci number?

a) 8

b) 21

c) 55

d) 14

18. Which of the following option is wrong?

a) Fibonacci number can be calculated by using Dynamic programming

b) Fibonacci number can be calculated by using Recursion method

c) Fibonacci number can be calculated by using Iteration method

d) No method is defined to calculate Fibonacci number

19. Which of the following recurrence relations can be used to find the nth fibonacci number?

a) F(n) = F(n) + F(n – 1)

b) F(n) = F(n) + F(n + 1)

c) F(n) = F(n – 1)

d) F(n) = F(n – 1) + F(n – 2)

20. Which of the following recursive formula can be used to find the factorial of a number?

a) fact(n) = n * fact(n)

b) fact(n) = n * fact(n+1)

c) fact(n) = n * fact(n-1)

d) fact(n) = n * fact(1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: THE STACK
	Slide 20: INTRODUCTION
	Slide 21: INTRODUCTION
	Slide 22: STACK AS AN ADT/ OPERATION ON STACK
	Slide 23: STACK AS AN ADT/ OPERATION ON STACK
	Slide 24: ALGORITHM FOR PUSH AND POP OPERATION
	Slide 25: ALGORITHM FOR PUSH AND POP OPERATION
	Slide 26: STACK IMPLEMENTATION
	Slide 27: STACK APPLICATION
	Slide 28: INFIX, PREFIX AND POSTFIX NOTATION
	Slide 29: CONVERSION OF INFIX TO POSTFIX EXPRESSION
	Slide 30: CONVERSION OF INFIX TO POSTFIX EXPRESSION
	Slide 31: CONVERSION OF INFIX TO POSTFIX EXPRESSION
	Slide 32: CONVERSION OF INFIX TO POSTFIX EXPRESSION
	Slide 33: CONVERSION OF INFIX TO POSTFIX EXPRESSION
	Slide 34: EVALUATION OF POSTFIX EXPRESSION
	Slide 35: EVALUATION OF POSTFIX EXPRESSION
	Slide 36: EVALUATION OF POSTFIX EXPRESSION
	Slide 37: EVALUATION OF POSTFIX EXPRESSION
	Slide 38: INFIX TO PREFIX CONVERSION
	Slide 39: INFIX TO PREFIX CONVERSION
	Slide 40: INFIX TO PREFIX CONVERSION
	Slide 41: INFIX TO PREFIX CONVERSION
	Slide 42: EVALUATION OF PREFIX EXPRESSION
	Slide 43: EVALUATION OF PREFIX EXPRESSION
	Slide 44: POSTFIX TO INFIX CONVERSION
	Slide 45: POSTFIX TO INFIX CONVERSION
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: QUEUE
	Slide 57: QUEUE - INTRODUCTION
	Slide 58: QUEUE AS AN ADT/ OPERATION ON QUEUE
	Slide 59: QUEUE AS AN ADT/ OPERATION ON QUEUE
	Slide 60: IMPLEMENTATION OF QUEUE
	Slide 61: TYPES OF QUEUE
	Slide 62: LINEAR QUEUE
	Slide 63: LINEAR QUEUE
	Slide 64: LINEAR QUEUE
	Slide 65: LINEAR QUEUE
	Slide 66: LINEAR QUEUE- ALGORITHM FOR QUEUE OPERATIONS
	Slide 67: LINEAR QUEUE- ALGORITHM FOR QUEUE OPERATIONS
	Slide 68: CIRCULAR QUEUE
	Slide 69: CIRCULAR QUEUE
	Slide 70: CIRCULAR QUEUE
	Slide 71: ALGORITHM FOR CIRCULAR QUEUE
	Slide 72: ALGORITHM FOR CIRCULAR QUEUE
	Slide 73: DEQUES
	Slide 74: DEQUES
	Slide 75: DEQUES
	Slide 76: ALGORITHM FOR INSERTING AN ELEMENT IN DEQUES
	Slide 77: ALGORITHM FOR INSERTING AN ELEMENT IN DEQUES
	Slide 78: ALGORITHM FOR DELETING AN ELEMENT IN DEQUES
	Slide 79: ALGORITHM FOR DELETING AN ELEMENT IN DEQUES
	Slide 80: PRIORITY QUEUES
	Slide 81: PRIORITY QUEUES
	Slide 82: APPLICATION OF QUEUES
	Slide 83: STACK VS QUEUES
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: LIST LINKED LIST
	Slide 95: LIST- INTRODUCTION
	Slide 96: STATIC IMPLEMENTATION OF LIST
	Slide 97: SOME COMMON OPERATIONS PERFORMED ON STATIC LIST
	Slide 98: LIST (ARRAY) AS AN ADT
	Slide 99: INSERTION OF AN ELEMENT IN ONE-DIMENSIONAL ARRAY
	Slide 100: INSERTION OF AN ELEMENT IN ONE-DIMENSIONAL ARRAY
	Slide 101: DELETION OF AN ELEMENT FROM ONE-DIMENSIONAL ARRAY
	Slide 102: DYNAMIC IMPLEMENTATION OF LIST
	Slide 103: LINKED LIST
	Slide 104: LINKED LIST
	Slide 105: ADVANTAGES AND DISADVANTAGES OF LINKED LIST
	Slide 106: OPERATIONS ON LINKED LIST
	Slide 107: OPERATIONS ON LINKED LIST
	Slide 108: TYPES OF LINKED LIST
	Slide 109: SINGLY LINKED LIST
	Slide 110: SINGLY LINKED LIST
	Slide 111: ALGORITHM FOR INSERTION A NODE IN SLL
	Slide 112: ALGORITHM FOR INSERTION A NODE IN SLL
	Slide 113: ALGORITHM FOR INSERTION A NODE IN SLL
	Slide 114: ALGORITHM FOR INSERTION A NODE IN SLL
	Slide 115: ALGORITHM FOR DISPLAY ALL NODES
	Slide 116: ALGORITHM FOR DELETING A NODE
	Slide 117: ALGORITHM FOR DELETING A NODE
	Slide 118: ALGORITHM FOR DELETING A NODE
	Slide 119: ALGORITHM FOR DELETING A NODE
	Slide 120: ALGORITHM FOR SEARCHING A NODE
	Slide 121: STACK USING LINKED LIST
	Slide 122: STACK USING LINKED LIST
	Slide 123: STACK USING LINKED LIST
	Slide 124: QUEUE USING LINKED LIST
	Slide 125: ALGORITH FOR ENQUEUE AN ELEMENT INTO A QUEUE
	Slide 126: ALGORITH FOR DEQUEUE AN ELEMENT FROM A QUEUE
	Slide 127: ADVANTAGE AND DISADVANTAGE OF SINGLY LINKED LIST
	Slide 128: DOUBLY LINKED LIST
	Slide 129: REPRESENTATION OF DOUBLY LINKED LIST
	Slide 130: ALGORITHM FOR INSERTING A NODE INTO DLL
	Slide 131: ALGORITHM FOR INSERTING A NODE INTO DLL
	Slide 132: ALGORITHM FOR INSERTING A NODE INTO DLL
	Slide 133: ALGORITHM FOR DELETING A NODE FROM DLL
	Slide 134: ALGORITHM FOR DELETING A NODE
	Slide 135: ALGORITHM FOR DELETING A NODE
	Slide 136: ALGORITHM FOR DELETING A NODE
	Slide 137: CIRCULAR LINKED LIST
	Slide 138: INSERTION ALGORITHM INTO CIRCULAR LINKED LIST
	Slide 139: INSERTION ALGORITHM INTO CIRCULAR LINKED LIST
	Slide 140: DELETION ALGORITHM FROM CIRCULAR LINKED LIST
	Slide 141: DELETION ALGORITHM FROM CIRCULAR LINKED LIST
	Slide 142: APPLICATION OF LINKED LIST IN COMPUTER SCIENCE
	Slide 143: APPLICATION OF LINKED LIST IN REAL WORLD
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: RECURSION
	Slide 154: INTRODUCTION
	Slide 155: INTRODUCTION
	Slide 156: INTRODUCTION
	Slide 157: TYPES OF RECURSION
	Slide 158: TYPES OF RECURSION
	Slide 159: TYPES OF RECURSION
	Slide 160: TYPES OF RECURSION
	Slide 161: TYPES OF RECURSION
	Slide 162: TYPES OF RECURSION
	Slide 163: TYPES OF RECURSION
	Slide 164: ADVANTAGES AND DISADVANTAGES OF RECURSION
	Slide 165: APPLICATIONS OF RECURSION
	Slide 166: ITERATIVE VS RECURSION
	Slide 167: ITERATIVE VS RECURSION
	Slide 168: TOWER OF HANOI
	Slide 169: TOWER OF HANOI
	Slide 170: TOWER OF HANOI- ALGORITHM
	Slide 171: TOWER OF HANOI
	Slide 172: VALIDITY OF EXPRESSION
	Slide 173: ALGORITHM FOR VALIDITY OF EXPRESSION
	Slide 174: EXAMPLE OF VALIDITY OF EXPRESSION
	Slide 175: EXAMPLE OF VALIDITY OF EXPRESSION
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183

