
Problem Solving and Searching
Techniques

Unit 9.2

Introduction
Problem solving, particularly in artificial intelligence, may be characterized as a systematic

search through a range of possible actions in order to reach some predefined goal or
solution.

Problem-solving methods divide into special purpose and general purpose.

A special-purpose method is tailor-made for a particular problem and often exploits very

specific features of the situation in which the problem is embedded. In contrast, a general-
purpose method is applicable to a wide variety of problems.

One general-purpose technique used in AI is means-end analysis—a step-by-step, or
incremental, reduction of the difference between the current state and the final goal.

Four general steps in problem solving:

– Goal formulation

– What are the successful world states

– Problem formulation

– What actions and states to consider given the goal

– Search

– Determine the possible sequence of actions that lead to the states of
known values and then choosing the best sequence.

– Execute

– Give the solution perform the actions.

Problem formulation
A problem is defined by:

– An initial state: State from which agent start

– Successor function: Description of possible actions available to the agent.

– Goal test: Determine whether the given state is goal state or not

– Path cost: Sum of cost of each path from initial state to the given state.

A solution is a sequence of actions from initial to goal state. Optimal solution
has the lowest path cost.

State Space representation

The state space is commonly defined as a directed graph in which each node

is a state and each arc represents the application of an operator transforming

a state to a successor state.

A solution is a path from the initial state to a goal state.

State Space representation of Vacuum World Problem:

States?? two locations with or without dirt: 2 x 2^2=8 states.

Initial state?? Any state can be initial

Actions?? {Left, Right, Suck}

Goal test?? Check whether squares are clean.

Path cost?? Number of actions to reach goal.

Water leakage problem
If hall _wet and kitchen_dry

then leak_in_bathroom

If hall_wet and bathroom_dry

then problem_in_kitchen

If window_closed or no_rain

then no_water_from_outside

Production System
A production system (or production rule system) is a computer program typically used

to provide some form of artificial intelligence, which consists primarily of a set of rules

about behavior.

These rules, termed productions, are a basic representation found useful in automated

planning, expert systems and action selection.

A production system provides the mechanism necessary to execute productions in order to

achieve some goal for the system.

Productions consist of two parts: a sensory precondition (or "IF" statement) and an action (or
"THEN").

If a production's precondition matches the current state of the world, then the production is
said to be triggered. If a production's action is executed, it is said to have fired.

A production system also contains a database, sometimes called working memory, which
maintains data about current state or knowledge, and a rule interpreter.

The rule interpreter must provide a mechanism for prioritizing productions when more than
one is triggered.

The underlying idea of production systems is to represent knowledge in the form of condition-
action pairs called production rules:

If the condition C is satisfied then the action A is appropriate.

Types of production rules
Situation-action rules

If it is raining then open the umbrella.

Inference rules

If Cesar is a man then Cesar is a person

Production system is also called ruled-based system

Architecture of Production System:

Short Term Memory:

- Contains the description of the current state.

Set of Production Rules:

- Set of condition-action pairs and defines a single chunk of problem solving knowledge.

Interpreter:

- A mechanism to examine the short term memory and to determine which rules to fire (According to some strategies
such as DFS, BFS, Priority, first-encounter etc)

The execution of a production system can be defined as a series of recognize-

act cycles:

Match –memory contain matched against condition of production rules, this

produces a subset of production called conflict set.

Conflict resolution –one of the production in the conflict set is then selected,

Apply the rule.

Consider an example:

Problem: Sorting a string composed of letters a, b & c.

Short Term Memory: cbaca

Production Set:

Production System: The water jug problem
Problem: There are two jugs, a 4-gallon one and a 3-gallon one. Neither jug has any measuring

markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly n

(0, 1, 2, 3, 4) gallons of water into one of the two jugs ?

Solution Paradigm:

- build a simple production system for solving this problem.

- represent the problem by using the state space paradigm.

State = (x, y); where: x represents the number of gallons in the 4-gallon jug; y represents the number

of gallons in the 3-gallon jug. x ε{0, 1, 2, 3, 4} and y ε{0, 1, 2, 3}.

The initial state represents the initial content of the two jugs. For instance, it may be (2, 3), meaning

that the 4-gallon jug contains 2 gallons of water and the 3-gallon jug contains three gallons of water.

The goal state is the desired content of the two jugs.

The left hand side of a production rule indicates the state in which the rule is applicable and the

right hand side indicates the state resulting after the application of the rule.

Solution:

Constraint Satisfaction Problem
A Constraint Satisfaction Problem is characterized by:

● a set of variables {x1, x2, .., xn},
● for each variable xi a domain Di with the possible values for that variable,

and
● a set of constraints, i.e. relations, that are assumed to hold between the

values of the variables. [These relations can be given intentionally, i.e. as a
formula, or extensionally, i.e. as a set, or procedurally, i.e. with an
appropriate generating or recognizing function.] We will only consider
constraints involving one or two variables.

The constraint satisfaction problem is to find, for each i from 1 to n, a value in
Di for xi so that all constraints are satisfied. Means that, we must find a value
for each of the variables that satisfies all of the constraints.

A CS problem can easily be stated as a sentence in first order logic, of the
form: (exist x1)..(exist xn) (D1(x1) & .. Dn(xn) => C1..Cm)

Constraints
A constraint is a relation between a local collection of variables.

The constraint restricts the values that these variables can simultaneously
have.

For example, all-diff(X1, X2, X3). This constraint says that X1, X2, and X3 must

take on different values. Say that {1,2,3} is the set of values for each of these

variables then:

X1=1, X2=2, X3=3 OK X1=1, X2=1,X3=3 NO

The constraints are the key component in expressing a problem as a CSP.

The constraints are determined by how the variables and the set of values are

chosen.

Each constraint consists of;

1. A set of variables it is over.

2. A specification of the sets of assignments to those variables that satisfy the

constraint.

The idea is that we break the problem up into a set of distinct conditions each of

which have to be satisfied for the problem to be solved.

Example: In N-Queens: Place N queens on an N x N chess board so that queen can
attack any other queen.

No queen can attack any other queen.

Given any two queens Qi and Qj they cannot attack each other.

Now we translate each of these individual conditions into a separate constraint.

Qi cannot attack Qj(i ≠j)

Qi is a queen to be placed in column i, Qj is a queen to be placed in column j.

The value of Qi and Qj are the rows the queens are to be placed in.

Note the translation is dependent on the representation we chose.

Queens can attack each other,

1. Vertically, if they are in the same column---this is impossible as Qi and Qj are placed
in different columns.

2. Horizontally, if they are in the same row---we need the constraint Qi≠Qj.

3. Along a diagonal, they cannot be the same number of columns apart as they are

rows apart: we need the constraint |i-j| ≠|Qi-Qj| (| | is absolute value)

Representing the Constraints;

1. Between every pair of variables (Qi,Qj) (i ≠j), we have a constraint Cij.

2. For each Cij, an assignment of values to the variables Qi= A and Qj= B, satisfies this

constraint if and only if;

A ≠B

| A-B| ≠|i-j|

Solutions:

A solution to the N-Queens problem will be any assignment of values to the variables
Q1,...,QN that satisfies all of the constraints.

Constraints can be over any collection of variables. In N-Queens we only need binary
constraints---constraints over pairs of variables.

Graph Coloring Problem

Graph coloring problem involves assigning colors to certain elements of a graph

subject to certain restrictions and constraints. In other words, the process of

assigning colors to the vertices such that no two adjacent vertexes have the same

color is caller Graph Colouring.

This is also known as vertex coloring.

Chromatic Number: The smallest number of colours needed to colour a graph G is

called its chromatic number.

For example, in the above image, vertices can be coloured using a minimum of 2

colours.

Hence the chromatic number of the graph is 2.

Applications of Graph Colouring:

● Map Coloring

● Scheduling the tasks

● Preparing Time Table

● Assignment

● Conflict Resolution

● Sudoku

Approach 1: Brute Force

● The simplest approach to solve this problem would be to generate all

possible combinations (or configurations) of colours.

● After generating a configuration, check if the adjacent vertices have the

same colour or not. If the conditions are met, add the combination to the

result and break the loop.

● Since each node can be coloured by using any of the M colours, the total

number of possible colour configurations are mV. The complexity is

exponential which is very huge.

Approach 2: Backtracking

In the previous approach, trying and checking every possible combination was

tedious and had an exponential time complexity.

Some of the permutation calculations were unnecessary but were calculated

again and again. Therefore, the idea is to use a backtracking approach to solve

the problem.

In this approach, the idea is to color a vertex and while coloring any adjacent

vertex, choose a different color. Similarly, color every possible vertex following

the restrictions, till any further vertex is left coloring. In any case, if all adjacent

Searching

Measuring problem Solving Performance
The performance of a search algorithm can be evaluated in four ways:

● Completeness: An algorithm is said to be complete if it definitely finds solution
to the problem, if exist.

● Time Complexity: How long (worst or average case) does it take to find a
solution? Usually measured in terms of the number of nodes explained.

● Space Complexity: How much space is used by the algorithm? Usually
measured in terms of the maximum number of nodes in memory at a time.

● Optimality/ Admissibility: If a solution is found, is it guaranteed to be a optimal
one? For example, is it the one with the minimum cost?

Time and space complexity is measured in terms of

b - maximum branching factor (number of successor of any node) of the
search tree

d - depth of least cost solution

m - maximum length of any path in the space

State space search
In Artificial Intelligence a state space consists of the following elements,

1. A (possibly infinite) set of states

1.1. Out of the possible states, one state represents the start state that is the initial state of the

problem.

1.2. Each state represents some configuration reachable from the start state

1.3. Out of the possible states, some states may be goal states (solutions)

2. A set of rules,

2.1. Applying a rule to the current state, transforms it to another or a new state in the state space

2.2 All operators may not be applicable to all states in the state space

State spaces are used extensively in Artificial Intelligence (AI) to represent and solve problems.

Uninformed Search Strategies
Uninformed search (or blind search)

– Strategies have no additional information about states beyond that provided in the

problem definition

Informed (or heuristic) search

– Search strategies know whether one state is more promising than another

Uninformed strategies (defined by order in which nodes are expanded):

– Breadth-first search
– Uniform-cost search

– Depth-first search
– Depth-limited search

– Iterative deepening search – Bi directional search

State space search examples
Example: Maze

A maze problem can be represented as a state-space

● Each state represents “where you are” that is the current
position in the maze

● The start state or initial state represents your starting
position

● The goal state represents the exit from the maze

Rules (for a rectangular maze) are: move north, move south, move
east, and move west

● Each rule takes you to a new state (maze location)
● Rules may not always apply, because of walls in the

maze

Example 2. The 15 Puzzle

General State space search problem
1. First, select some way to represent states in the given problem in an unambiguous way.

2. Next, formulate all actions or operators that can be performed in states, including their

preconditions and effects.

● Actions or operates are called PRODUCTION RULES

3. Represent the initial state or states of the problem.

4. Formulate precisely when a state satisfies the goal of our problem.

5. Activate the production rules on the initial state and its descendants, until a goal state is

reached

Fringe: it is the collection of nodes that have been generated but not yet expanded.

The set of all leaf nodes available for expansion at any given point is called the

frontier.

Implementation: Fringe / Frontier is a FIFO queue.

Depth First Search

Looks for the goal node among all the children of the current node before using the sibling of

this node i.e. expand deepest unexpanded node.

Here Fringe is implemented as Stack or (LIFO queue)

Drawbacks of uninformed search

● Criterion to choose next node to expand depends only on a global

criterion: level

● Does not exploit the structure of the problem

● One may prefer to use a more flexible rule, that takes advantage of what

is being discovered on the way, and hunches about what can be a good

move

● Very often, we can select which rule to apply by comparing the current

state and the desired state.

Heuristic Search (Informed Search)

Hill Climbing

Hill climbing can be used to solve problems that have many solutions, some of

which are better than others.

It starts with a random (potentially poor) solution, and iteratively makes small

changes to the solution, each time improving it a little.

When the algorithm cannot see any improvement anymore, it terminates.

Ideally, at that point the current solution is close to optimal, but it is not

guaranteed that hill climbing will ever come close to the optimal solution.

The hill climbing can be described as follows:

● Start with current-state = initial-state.
● Until current-state = goal-state OR there is no change in current-state do:

○ Get the successors of the current state and use the evaluation function
to assign a score to each successor.

○ If one of the successors has a better score than the current-state then
set the new current-state to be the successor with the best score.

Problems with Hill Climbing

Gets stuck at local minima when we reach a position where there are no
better neighbors, it is not a guarantee that we have found the best solution.
Ridge is a sequence of local maxima.

Another type of problem we may find with hill climbing searches is finding a
plateau. This is an area where the search space is flat so that all neighbors
return the same evaluation

Local Heuristic: +1 for each block that is resting on the thing it is supposed to be

resting on

-1 for each block that is resting on a wrong thing

Global Heuristic

For each block that has the correct support structure: +1 to every block in the

support system

For each block that has a wrong support structure : -1 to every block in the

support system

Simulated Annealing
It is motivated by the physical annealing process in which material is heated

and slowly cooled into a uniform structure.

Compared to hill climbing the main difference is that SA allows downwards

steps.

Simulated annealing also differs from hill climbing in that a move is selected

at random and then decides whether to accept it.

If the move is better than its current position then simulated annealing will

always take it.

If the move is worse (i.e. lesser quality) then it will be accepted based on some

probability.

The probability of accepting a worse state is given by the equation

Game playing
Game Playing is an important domain of artificial intelligence. Games don’t require much

knowledge; the only knowledge we need to provide is the rules, legal moves and the
conditions of winning or losing the game.

Both players try to win the game. So, both of them try to make the best move possible at each

turn. Searching techniques like BFS(Breadth First Search) are not accurate for this as the
branching factor is very high, so searching will take a lot of time. So, we need another search

procedures that improve –

● Generate procedure so that only good moves are generated.

● Test procedure so that the best move can be explored first.

The most common search technique in game playing is Minimax search procedure. It is
depth-first depth-limited search procedure. It is used for games like chess and tic-tac-toe.

https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/

A game can be formally defined as a kind of search problem as below:

Initial state: It includes the board position and identifies the player to move.

Successor function: It gives a list of (move, state) pairs each indicating a legal move
and resulting state.

Terminal test: This determines when the game is over. States where the game is
ended are called terminal states.

Utility function: It gives numerical value of terminal states. E.g. win (+1), loose (-1) and
draw (0). Some games have a wider variety of possible outcomes eg. ranging from +92
to -192.

MinMax Algorithm
Let us assign the following values for the game: 1 for win by X, 0 for draw, -1 for loss by

X.

Given the values of the terminal nodes (win for X (1), loss for X (-1), or draw (0)), the

values of the non-terminal nodes are computed as follows:

1. the value of a node where it is the turn of player X to move is the maximum

of the values of its successors (because X tries to maximize its outcome);

2. the value of a node where it is the turn of player O to move is the minimum

of the values of its successors (because O tries to minimize the outcome of X).

Figure below shows how the values of the nodes of the search tree are computed from

the values of the leaves of the tree. The values of the leaves of the tree are given by the

rules of the game

Consider the following game tree (drawn from the point of view of the Maximizing player):

Alpha beta pruning
The problem with minimax search is that the number if game states it has
examined is exponential in the number of moves. Unfortunately, we can’t eliminate
the exponent, but we can effectively cut it in half.

The idea is to compute the correct minimax decision without looking at every node
in the game tree, which is the concept behind pruning.

Here the idea is to eliminate large parts of the tree from consideration.

The particular technique for pruning that we will discuss here is Alpha-Beta
Pruning.

When this approach is applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision.

Alpha-beta pruning can be applied to trees of any depth, and it is often possible to
prune entire sub-trees rather than just leaves.

Alpha-beta pruning is a technique for evaluating nodes of a game tree that eliminates
unnecessary evaluations. It uses two parameters, alpha and beta.

Alpha: is the value of the best (i.e. highest value) choice we have found so far at any
choice point along the path for MAX.

Beta: is the value of the best (i.e. lowest-value) choice we have found so far at any
choice point along the path for MIN.

Alpha-beta search updates the values of alpha and beta as it goes along and prunes the
remaining branches at a node as soon as the value of the current node is known to be
worse than the current alpha or beta for MAX or MIN respectively.

Example of Tic Tac Toe
There are two players denoted by X and O. They are alternatively writing their letter in one
of the 9 cells of a 3 by 3 board. The winner is the one who succeeds in writing three letters

in line.

The game begins with an empty board. It ends in a win for one player and a loss for the
other, or possibly in a draw.

A complete tree is a representation of all the possible plays of the game. The root node is

the initial state, in which it is the first player's turn to move (the player X).

The successors of the initial state are the states the player can reach in one move, their

successors are the states resulting from the other player's possible replies, and so on.

Terminal states are those representing a win for X, loss for X, or a draw.

Each path from the root node to a terminal node gives a different complete play of the

game. Figure given below shows the initial search space of Tic-Tac-Toe.

MCQ

1. What is the main task of a problem-solving agent?

a) Solve the given problem and reach to goal

b) To find out which sequence of action will get it to the goal state

c) All of the mentioned

d) None of the mentioned

Answer: c

2. What is state space?

a) The whole problem

b) Your Definition to a problem

c) Problem you design

d) Representing your problem with variable and parameter

Answer: d

3. A search algorithm takes _________ as an input and returns ________ as an

output.

a) Input, output

b) Problem, solution

c) Solution, problem

d) Parameters, sequence of actions

Answer: b

4. A problem in a search space is defined by one of these state.

a) Initial state

b) Last state

c) Intermediate state

d) All of the mentioned

Answer: a

5. The process of removing detail from a given state representation is called

a) Extraction

b) Abstraction

c) Information Retrieval

d) Mining of data

Answer: b

6. The _______ is a touring problem in which each city must be visited exactly
once. The aim is to find the shortest tour.

a) Finding shortest path between a source and a destination

b) Travelling Salesman problem

c) Map coloring problem

d) Depth first search traversal on a given map represented as a graph

Answer: b

7. Web Crawler is a/an ____________

a) Intelligent goal-based agent

b) Problem-solving agent

c) Simple reflex agent

d) Model based agent

Answer: a

8. What is the major component/components for measuring the performance

of problem solving?

a) Completeness

b) Optimality

c) Time and Space complexity

d) All of the mentioned

Answer: d

9. . A production rule consists of ____________

a) A set of Rule

b) A sequence of steps

c) Set of Rule & sequence of steps

d) Arbitrary representation to problem

Answer: c

10. Which search method takes less memory?

a) Depth-First Search

b) Breadth-First search

c) Linear Search

d) Optimal search

Answer: a

11. Which is the best way to go for Game playing problem?

a) Linear approach

b) Heuristic approach (Some knowledge is stored)

c) Random approach

d) An Optimal approach

Answer: b

12. A* algorithm is based on ___________

a) Breadth-First-Search

b) Depth-First –Search

c) Best-First-Search

d) Hill climbing

Answer: c

13. The search strategy the uses a problem specific knowledge is known as

a) Informed Search

b) Best First Search

c) Heuristic Search

d) All of the mentioned

Answer: d

14. Best-First search can be implemented using the following data structure.

a) Queue

b) Stack

c) Priority Queue

d) Circular Queue

Answer: c

15. Heuristic function h(n) is ________

a) Lowest path cost

b) Cheapest path from root to goal node

c) Estimated cost of cheapest path from root to goal node

d) Average path cost

Answer: c

16 What is the evaluation function in A* approach?

a) Heuristic function

b) Path cost from start node to current node

c) Path cost from start node to current node + Heuristic cost

d) Average of Path cost from start node to current node and Heuristic cost

Answer: c

17. Which search strategy is also called as blind search?

a) Uninformed search

b) Informed search

c) Simple reflex search

d) All of the mentioned

Answer: a

18. Which search is implemented with an empty first-in-first-out queue?

a) Depth-first search

b) Breadth-first search

c) Bidirectional search

d) None of the mentioned

Answer: b

19. When is breadth-first search is optimal?

a) When there is less number of nodes

b) When all step costs are equal

c) When all step costs are unequal

d) None of the mentioned

Answer: b

20. What is the space complexity of Depth-first search?

a) O(b)

b) O(bl)

c) O(m)

d) O(bm)

Answer: d

21. How many parts does a problem consists of?

a) 1

b) 2

c) 3

d) 4

Answer: d

22. Which search implements stack operation for searching the states?

a) Depth-limited search

b) Depth-first search

c) Breadth-first search

d) None of the mentioned

Answer: b

23. _______________ Is an algorithm, a loop that continually moves in the

direction of increasing value – that is uphill.

a) Up-Hill Search

b) Hill-Climbing

c) Hill algorithm

d) Reverse-Down-Hill search

Answer: b

24. When will Hill-Climbing algorithm terminate?

a) Stopping criterion met

b) Global Min/Max is achieved

c) No neighbor has higher value

d) All of the mentioned

Answer: c

25. Hill climbing sometimes called ____________ because it grabs a good

neighbor state without thinking ahead about where to go next.

a) Needy local search

b) Heuristic local search

c) Greedy local search

d) Optimal local search

Answer: c

26. Searching using query on Internet is, use of ___________ type of agent.

a) Offline agent

b) Online agent

c) Both Offline & Online agent

d) Goal Based & Online agent

Answer: d

27. Which of the Following problems can be modeled as CSP?

a) 8-Puzzle problem

b) 8-Queen problem

c) Map coloring problem

d) All of the mentioned

Answer: d

27. What among the following constitutes to the incremental formulation of

CSP?

a) Path cost

b) Goal cost

c) Successor function

d) All of the mentioned

Answer: d

28. The term ___________ is used for a depth-first search that chooses values

for one variable at a time and returns when a variable has no legal values left

to assign.

a) Forward search

b) Backtrack search

c) Hill algorithm

d) Reverse-Down-Hill search

Answer: b

29. Consider a problem of preparing a schedule for a class of student. What

type of problem is this?

a) Search Problem

b) Backtrack Problem

c) CSP

d) Planning Problem

Answer: c

30. Language/Languages used for programming Constraint Programming

includes ____________

a) Prolog

b) C#

c) C

d) Fortran

Answer: a

31. Which of the following algorithm is generally used CSP search algorithm?

a) Breadth-first search algorithm

b) Depth-first search algorithm

c) Hill-climbing search algorithm

d) None of the mentioned

Answer: b

32. Which is the most straightforward approach for planning algorithm?

a) Best-first search

b) State-space search

c) Depth-first search

d) Hill-climbing search

Answer: b

33. The initial state and the legal moves for each side define the __________ for
the game.

a) Search Tree

b) Game Tree

c) State Space Search

d) Forest

Answer: b

34. General algorithm applied on game tree for making decision of win/lose is

a) DFS/BFS Search Algorithms

b) Heuristic Search Algorithms

c) Greedy Search Algorithms

d) MIN/MAX Algorithms

Answer: d

35. What is the complexity of minimax algorithm?

a) Same as of DFS

b) Space – bm and time – bm

c) Time – bm and space – bm

d) Same as BFS

Answer: a

36. Which search is equal to minimax search but eliminates the branches that

can’t influence the final decision?

a) Depth-first search

b) Breadth-first search

c) Alpha-beta pruning

d) None of the mentioned

Answer: c

37. Which search is similar to minimax search?

a) Hill-climbing search

b) Depth-first search

c) Breadth-first search

d) All of the mentioned

Answer: b

38. Which value is assigned to alpha and beta in the alpha-beta pruning?

a) Alpha = max

b) Beta = min

c) Beta = max

d) Both Alpha = max & Beta = min

Answer: d

39. What is the primary purpose of the Minimax algorithm in game theory?

a) To find the best move for both players

b) To calculate the possible scores of all moves

c) To maximize the minimum gain for a player

d) All of the above

Answer: d

40. Which of the following statements about Alpha-Beta Pruning is true?

a) It guarantees an optimal solution

b) It always finds the best move faster than Minimax

c) It reduces the number of nodes evaluated in the search tree

d) It requires more memory than Minimax

Answer: c

	Slide 1: Problem Solving and Searching Techniques
	Slide 2: Introduction
	Slide 3
	Slide 4: Problem formulation
	Slide 5: State Space representation
	Slide 6: State Space representation of Vacuum World Problem:
	Slide 7
	Slide 8: Water leakage problem
	Slide 9: Production System
	Slide 10
	Slide 11: Types of production rules
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Production System: The water jug problem
	Slide 16
	Slide 17
	Slide 18: Solution:
	Slide 19
	Slide 20: Constraint Satisfaction Problem
	Slide 21: Constraints
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Graph Coloring Problem
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Searching
	Slide 36
	Slide 37: Measuring problem Solving Performance
	Slide 38: State space search
	Slide 39: Uninformed Search Strategies
	Slide 40: State space search examples
	Slide 41: Example 2. The 15 Puzzle
	Slide 42: General State space search problem
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Drawbacks of uninformed search
	Slide 61: Heuristic Search (Informed Search)
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Hill Climbing
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Global Heuristic
	Slide 88: Simulated Annealing
	Slide 89
	Slide 90: Game playing
	Slide 91
	Slide 92: MinMax Algorithm
	Slide 93
	Slide 94: Consider the following game tree (drawn from the point of view of the Maximizing player):
	Slide 95: Alpha beta pruning
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Example of Tic Tac Toe
	Slide 102
	Slide 103: MCQ
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144

