Knowledge Representation
Unit 9.3



Knowledge

Knowledge is a theoretical or practical understanding of a subject or a domain.
Knowledge is also the sum of what is currently known.

Types of knowledge:

Classification-based Knowledge :Ability to classify information
Decision-oriented Knowledge: Choosing the best option

Descriptive knowledge: State of some world (heuristic)

Procedural knowledge: How to do something

Reasoning knowledge: What conclusion is valid in what situation?

Assimilative knowledge: What its impact is?



A Knowledge-Based Agent

A knowledge-based agent consists of a knowledge base (KB) and an inference

engine (IE).
Input from | Inference Output
environment Engine (actions)
s Learning
(KB update)
Knowledge G
Base

A knowledge-base is a set of sentences of what one knows about the world.

The Inference engine derives new sentences from the input and KB.
The agent operates as follows:

1. It receives percepts from environment
2. It computes what action it should perform (by IE and KB)

3. It performs the chosen action.



The objective of knowledge representation is to express the knowledge about the
world in a computer-tractable form.

This computer- tractable form of knowledge helps the agent to identify patterns of
good reasoning and patterns of bad reasoning, so the agent know which to follow
and which to avoid.

A formal language is required to represent knowledge in a computer tractable form

and reasoning processes are required to manipulate this knowledge to deduce
new facts.

Key aspects of knowledge representation languages are: —

e Syntax: describes how sentences are formed in the language.

e Semantics: describes the meaning of sentences, what is it the sentence
refers to in the real world.

e Proof Theory(Inference method): Set of rules for generating new sentences
that are necessarily true given that the old sentences are true



Knowledge Representation using Logic: —

Logic is defined as a formal language for expressing knowledge and ways of
reasoning.

Therefore, it should have syntax, semantics and inference method.
Syntax: describes how sentences are formed in the LOGIC.
Semantics: describes the meaning of sentences.

Inference method: set of rules for generating new sentences.



Compared to natural languages (expressive but context sensitive) and
programming languages (good for concrete data structures but not expressive)
logic combines the advantages of natural languages and formal languages.

So, Logic is:

Concise, unambiguous, context insensitive, expressive, effective for inferences
Examples of Logics are:

Propositional logic

Predicate Logic and

Fuzzy Logic



Propositional Logic

Propositional logic is the simplest formal logic for the representation of the
knowledge in terms of propositions.

Proposition is a declarative statement that is either true or false but not both.

If a proposition is true, then we say it has a truth value of "true"; if a proposition is
false, its truth value is "false".

Some examples of Propositions are given below :
"Man is Mortal", it returns truth value —TRUEI
"12 + 9 =3 - 2", it returns truth value —FALSEI
The following sentences are not Proposition:

"Ais less than 2". It is because unless we give a specific value of A, we cannot
say whether the statement is true or false.

Also the sentences "Close the door", and "Is it hot outside ?"are not propositions.



Syntax of Propositional Logic

Syntax of the propositional logic defines the:

e Which symbols can be use (English: letters, punctuation)
e Rules for constructing legal sentences in the logic.
e How we are allowed to combine symbols

Symbols:

e Logical constants: true, false
e Propositional symbols: P, Q, R, S, ..., etc
e \Wrapping parentheses: ( ... )



Atomic formulas(Sentence): Propositional Symbols or logical constants.
Literals: atomic sentences and their negations

Complex Formulas: can be formed by combining atomic formulas with the
following connectives:

—1...not [negation]
/\ ..and [conjunction]
V ..or [disjunction]
—>...implies [implication / conditional]

<—>_.is equivalent [biconditional]



* A sentence 1s defined as follows:

— A symbol is a sentence

— If S is a sentence, then —S is a sentence

— If S is a sentence, then (S) is a sentence

— If S and T are sentences, then (S v T), (S AT), (S = T), and (S <> T) are sentences

— A sentence results from a finite number of applications of the above rules

* Order of precedence of logical connectors

— highest precedence

<== lowest precedence

e.g. - PvQOAR= Sisequivalentto (mP)Vv(QAR)) =S



Examples of PL sentences

P means "It is hot"
Q means "It is humid"
R means "It 1s raining"
PAQ=>R
"If it is hot and humid, then it is raining"
Q=>P
"If it is humid, then it is hot"

Q

"It is humid."



How to compute the truth of sentences formed with each of the five connectives?

— For complex sentences, we have five rules, which hold for any sub-sentences P

and Q in any model m:
=P is true iff P is false in m.
P A Q is true iff both P and @ are true in m.
P v @ is true iff either P or (Q is true in m.
P = Q is true unless P is true and @ is false in m.
P < Q is true iff P and @ are both true or both false in m.

— The above rules can be summarized as follows:

P Q -P P /'\Q Pv Q P= Q P& Q
false | false true false false true true
false | true true false true true false
true | false | false false true false false
true | true false true true true true




Properties

Validity(Tautology)
Satisfiability (contingency)
Un-Satisfiability (Contradictory)
Equivalent

Entailment

Completeness

Soundness



* Validity:
— A sentence is valid if it is true in all models,

eg. True., Av-A.A>A.(AA(A=>B)) =B

— Valid sentences are also known as tautologies. Every valid sentence is logically

equivalent to True
* Example : Prove [(A—B)AA]—B is a tautology

Solution: The truth table is as follows

A B A—-B (A—-B)AA [(A—-B)AA]—B
True True True True True
True False False False True
False True True False True
False False True False True

As we can see every value of [(A—B)AA]—B is "True", it is a tautology.



* Satisfiability:
— A sentence 1s satisfiable if it is true in some model
- Eg,AVA
— Satisfiable sentences are also known as Contingency.

Example: Prove (AVB)A(—A)a contingency

Solution: The truth table is as follows

A B AVvB A (AvB)A(~A)
True True True False False
True False True False False
False True True True True
False False False True False

As we can see every value of (AVB)A(—A) has both “True” and “False”

it 1S a contingency.



Un-Satisfiability (Contradictory) :
— A sentence is un-satisfiable if it is true in no models
 Eg,ANX A

— Un-Satisfiable sentences are also known as contradictory sentences.
Example: Prove (AVB)A[(—A)A(—B)] is a contradiction
Solution: The truth table is as follows :

A B Av -A B (-A)A(- (AvB)A[(-A)A(-
B B) B)]
True True True False False False False
True False True False True False False
False True True True False False False
False False False True True True False

As we can see every value of (AVB)A[(—A)A(—B)] is “False™, it is a
contradiction.



Propositional Equivalences
Two statements X and Y are logically equivalent if any of the following two
conditions hold :
— The truth tables of each statement have the same truth values.
— The bi-conditional statement X<Y is a tautology.
Example : Prove 7(AVB)and[(—A)A(—B)] are equivalent
Testing by 15! method (Matching truth table)

A B AvB - (AvB) A ~B [(~A)A(-B)]
True True True False False False False
True False True False False True False
False True True False True False False
False False False True True True True

Here, we can see the truth values of ~(AVB)and[(—A)A(—B)] are same, hence
the statements are equivalent.



* Testing by 2" method (Bi-conditionality)

A B ﬂ(AVB) [(ﬂA)A(ﬂB)] [ﬂ(AVB)]@[(‘\A)A(ﬁB)]

True True False False True
True False False False True
False True False False True
False False True True True

* As[~(AVB)]e[(—A)A(—B)] is a tautology, the statements are equivalent.



* Example2:

— Symbols:
* Pis “It is hot”,
* Qis “It is humid” and
* Ris “It is raining”.

— KB:
* PAQ=>R (“If it is hot and humid, then it is raining”),
* Q=>P (“If it is humid, then it is hot”),
*  Q (“Tt is humid”).

— Question:
* Isitraining? (i.e., is R entailed by KB?)

PQR|IPANQ=R|Q=P|Q|KB|R|KB=R|
T | J i ™ || T |2 Tl
T, T.¥ F T T| F |F T
T F.T T T rl 7|7 T
T,.F, F i by T F| F |F T
T T F T P |T T
F.T.F T F | P |P T
F,F,T T T F| F |T| T
F,F,F T T F| F |F| T

— So, R is entailed by the KB and we can conclude it is raining.



Deductive (proof) statements

Done by applying rules of inference directly to the sentences in our knowledge base to
construct a proof of the desired sentence without consulting models.

— Example:
» All men are mortal.
« Ram is a man.

e Therefore,Ram is mortal.

If the number of models is large but the length of the proof is short, then Deductive proof
can be more efficient than model checking.



Important Logical Equivalences

~(~p)=p the Double Negative Law

~(pvq) = (~p)~(~q)
~(p~q) = (~p)v(~q)
p~(qvr) = (p~q)v(p,r)
pv(g-r) = (pvq)/(pvT)

De Morgan's Laws

the Distributive Laws



Lgvr

Rule Tautology Name
P29 Modus Ponens
p ((p—)q),\p):q (Law of
o Detachment)
P—=q
=iy (( p= q) A —q) == Modus Tollens
K
pP—rq Hypothetical
q=r ((p—)q)h(q-—br)):(p-—’ r) Syllegism
P (Transitivity)
PV
Disjunctive
N
[
— =2pVv iti
= PVe P=pPVvYq Addition
I,M : ( PA q) =p Simplification
o
p
q (P)a(g)=2(raq) Conjunction
Lpag
L]
pvr ((pve/)/\(—y)vr)):(qu) Resolution



Let’s look at an example for each of these rules to help us make sense of things.
Let p be “It is raining,” and g be “I will make tea,” and r be “I will read a book.”

Example: Modus Ponens

“If it is raining, then | will make tea.” pP—q Modus Ponens (Law of Detachment)

“It is raining.” P ((p — q)/\ p) =q
“Therefore, | will make tea.” o q |



Some Equivalence Laws

Idempotency
Associativity

Commutativity

Distributivity
De Morgan’s
laws

Conditional
elimination

Bi-conditional
elimination

PeQ=P—>Q & (Q—P)



Semantics for Propositional logic

The semantics or meaning of a sentence is just the value true
or false. The terms used for semantics of a language are given
below.

Valid A sentence is valid if it is true for all interpretations. Valid
sentences are also called tautologies.

Model An interpretation of a formula or sentence under which the
formula is true is called a model of that formula.

Unsatisfiable | It is said to be unsatisfiable if it is false for every interpretation.
(contradiction)

Satisfiable It is said to be satisfiable if it is true for some interpretation.

Equivalence | Two sentences are equivalent if they have the same truth value
under every interpretation.




Two Normal (Canonical) Forms

All wffs can be expressed in the following to normal forms

1. CNF (Conjunctive Normal Form)

e.g:. (Av—-B)A(Bv-=Dv-0)

Clause 1 clause 2

2. DNF (Disjunctive Normal Form)

e.g. (AAr=B)v(BA—-DA-=C)

models models



Conversion to CNF
A sentence that is expressed as a conjunction of disjunctions of literals is said
to be in conjunctive normal form (CNF). A sentence in CNF that contains only
k literals per clause is said to be in k-CNF.

Algorithm:
— Eliminate «»  rewriting P—Q as (P—Q)A(Q—P)
— Eliminate —  rewriting P—Q as —PVQ
— Use De Morgan'‘s laws to push — inwards:
* rewrite —(PAQ) as —Pv—Q
* rewrite —(PVQ) as —7PA—Q
— Eliminate double negations: rewrite ——P as P
— Use the distributive laws to get CNF:
* rewrite (PAQ)VR as (PVR)A(QVR)
— Flatten nested clauses:
* (PAQ ARasPAQAR
* (PVQ)VR as PVQVR



Proof by resolution

Resolution is used with knowledge bases in CNF (or clausal form), and is

complete for propositional logic.

Resolution takes two clauses and produces a new clause containing all the

literals of the two original clauses except the two complementary literals.

In addition the resulting clause should contain only one copy of each literal.

The removal of multiple copies of literals is called factoring.

For example, if we resolve (A V B) with (AVv—B), we obtain (A V A), which

is reduced to just A.



Resolution Algorithm:

- Convert KB into CNF

Add negation of sentence to be entailed into KB 1.. (KB A —a)

Then apply resolution rule to resulting clauses.

The process continues until:

- There are no new clauses that can be added
Hence KB does not entail o

- Two clauses resolve to entail the empty clause.
Hence KB does entail a



Resolution Examplel

Example: Consider the knowledge base givenas: KB=(B <= (Av(C)) A -B
Prove that —A can be inferred from above KB by using resolution.

Solution:
At first, convert KB into CNF

B=(AvO)A(Av(C)=B)A—-B
(-BVAVO)IA(-(AVvC)vB)A—-B
(-BVAvVvOA((-AA-C)vB)A—-B
(-BVAvO)A(-AVvB)A(—-CvB)A—~B

Add negation of sentence to be inferred from KB into KB

Now KB contains following sentences all in CNF
(-BvAvC(O)

(—=A v B)

(—-C v B)

-~ B

A (negation of conclusion to be proved)

Now use Resolution algorithm






Pros and cons of propositional logic
Propositional logic is declarative
Propositional logic is compositional:
— meaning of B A P is derived from meaning of B and of P
Meaning in propositional logic is context-independent
— (unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power (unlike natural

language)



Comparison Between propositional logic and FOPL
Propositional logic assumes the world contains facts, whereas first-
order logic (like natural language) assumes the world contains:

— Objects: people, houses, numbers, colors, baseball games, wars, ...

— Relations: red, round, prime, brother of, bigger than, part of, comes

between,...
— Functions: father of, best friend, one more than, plus, ...
The primary difference between PL and FOPL is their ontological
commitment( What exists in the world — TRUTH)
— PL: facts hold or do not hold.

— FL: objects with relations between them that hold or do not hold



Predicate Logic

propositional logic is best to illustrate the basic concepts of logic

and knowledge-based agents.

But, Propositional logic 1s limited in several ways.
— Hard to represent information concisely.
— Must deal with facts that are either TRUE or FALSE.
Predicate Logic! a more powerful logic (use foundation of

propositional logic) by adding more expressive concepts.



Predicates

A Predicate is a declarative sentence whose true/false value depends on
one or more variables.

The statement “x is greater than 3" has two parts:

e the subject: x is the subject of the statement
e the predicate: “is greater than 3” (a property that the subject can have) .

We denote the statement “x is greater than 3" by P (x), where P is the
predicate “is greater than 3" and x is the variable.

The statement P(x) is also called the value of propositional function P at x.



Assign a value to x, so P(x) becomes a proposition and has a truth value:

e P (5)is the statement “5 is greater than 3", so P (5) is true.
e P (2)is the statement “2 is greater than 3”7, so P (2) is false.

Prime(x) = “x is a prime number.”

e Prime(2) is true, since the only numbers that divide 2 are 1 and itself.
e Prime(9) is false, since 3 divides 9.

C(x, y)="x is the capital of y”.

e (C(Ottawa,Canada) is true.
e C(Buenos Aires,Brazil) is false.

E(X,y,z)="x+y=2".

e E(2,35)is..
E@4, 4,17)is ...



* First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there is only one

“value” for any given “input”
* Examples:
— Objects: Students, lectures, companies, cars ...
— Properties: blue, oval, even, large, ...

— Relations: Brother, bigger-than, outside, part-of, has-color, occurs-after,

owns, visits, precedes, ...

— Functions: father-of, best-friend, second-half, one more-than ...



Representing knowledge in FOPL
* The basic syntactic elements of first order logics are the symbols.
* Formula in FOPL contains two types of Symbols. They are:

1. User defined symbols 2. Logic defined symbols

* Variables:
— Constants: X,Y,Z
3 John Can be instantiated
* Individuals
= Hemclions: * Logical Operators()
v fih * Truth Symbols (TRUE, FALSE)
* mappings
— Predicates: Quantifiers:
* P(x,y) e YV forall

* functions whose range is {True,False } e dthere exists



Quantifiers in first order logic

FOPL also provides variable quantifiers that allow the expression of properties

for entire collections of objects instead of enumerating objects by name.
Two types of quantifiers:

— Universal quantifier (V ): means “for all”.

« Existential quantification (3): means “there exists”.

Quantifiers are used with sentences containing variable symbols.

— Let X be a variable symbol and P be a sentence.

Then (¥ X, P(X)) is a sentence and (3 X, P(X)) is a sentence.



* Universal quantification:
— Often associated with English words “all”, “everyone”, “always”, etc.
— Syntax: V<Variables> <sentence>
— E.g., Everyone at CAB is smart:
Vx At(x, CAB) = Smart(x)

(we can also read this as “if X is at CAB, then X is smart)

* Vx P(x)is true in a model M iff P(x) is true for all x in the model

— Roughly speaking, equivalent to the conjunction of instantiations of P

— E.g.,: At(Ram,CAB) = Smart(Ram) AAt(Hari, CAB)= Smart(Hari)A ...



* Typically, = is the main connective with V
— A universal quantifier is also equivalent to a set of implications over all
objects
* Common mistake: using A as the main connective with V:
* Vx At(x, CAB) A Smart(x)

* Means “Everyone is at CAB and everyone is smart”

* You rarely use universal quantification to make blanket statements
about every individual in the world (because such statement is hardly
true)

e.g.. Vx human(x) = mortal(x)
says, all humans are mortal

but, Vx human(x) A mortal(x)
say. everything is human and mortal



« Existential quantification:
* Often associated with English words “someone”, “sometimes”, etc.
— Syntax: d<variables> <sentence>

— Example: Someone at CAB is smart:
dx At(x, CAB) A Smart(x)

* dx P(x) is true in a model m iff P(x) is true for at least one x in the model
— Roughly speaking, equivalent to the disjunction of instantiations of P
— At(Ram, CAB) A Smart(RAM)vAt(Hari, CAB) A Smart(Har1)v ...



* Typically, A 1s the main connective with 3
¢ Common mistake: using = as the main connective with 3

— E.g.: dx At(x, CAB) = Smart(x) is true even if there is anyone
who is not at CAB!

e.g.. dx bird(x) A—flies(x)
says, there is a bird that does not fly
but, 3x bird(x) = —flies(x)

is also true for anything thatis not a bird



Connections between All and Exists

* We can relate sentences involving V and 3 using De Morgan’s laws:
1. (VXx) —P(x) « —(3dx) P(x)
2. =(Vx) P(x) « (3x) =P(x)
3. (Vx) P(x) « = (Ix) —P(x)
4. (Ix) P(x) e —(Vx) —-P(x)
* Examples
1. All dogs don’t like cats «» No dogs like cats
2. Not all dogs dance «<» There is a dog that doesn’t dance
3. All dogs sleep «» There is no dog that doesn’t sleep

4. There is a dog that talks <> Not all dogs can’t talk



* Convert the following to the language of

predicate logic.

* Every apple is either green or yellow
* No apple is blue

* If an apple is green then its tasty

* Every man likes a tasty apple

* Some people like garlic

* Fido is a dog and a good dog.

 All basketball players are tall



* Every apple is either green or yellow
VX (apple( X ) = green(X) v red (X))
* No appleis blue

VX (appldx) = —blue( X))

* Ifan appleis green then its tasty
VX ((appld X ) A green( X)) = tasty(X))
* Every man likes a tasty apple

VXY (man( X ) A tastyApple(Y ) = likes( X ,Y)

* Some people like garlic

X (person(X ) = likes(X , garlic))

Fido is a dog and a good dog.
dog( fido) A gooddog( fido)

All basketball players are tall
VX (basketballPlaver( X ) =>tall( X))



 Universal instantiation (UI):
— Ul Rule: Substitute ground term (term without variables) for the
variables.

— auniversally quantified sentence can be replaced by the set of all possible

instantiations.

— After UI we discard the universally quantified sentence.



* For example: suppose our knowledge base contains just the sentences

v x King(x) A Greedy(x) = Evil(x)  (all greedy kings are evil)

King(John)

Greedy(John)

Brother (Richard, John) .

— Then we apply Ul to the first sentence using all possible ground-term
substitutions from the vocabulary of the knowledge base (in this case,
{x/John} and {x/Richard }).

— We obtain

* King(John) A Greedy(John) = Evil(John)
* King(Richard ) A Greedy(Richard) = Evil(Richard) ,

— and we discard the universally quantified sentence.



Existential instantiation(EI):

El rule: the variable is replaced by a single new constant symbol does not

appear elsewhere in the knowledge base.

Basically, the existential sentence says there is some object satisfying a
condition, and applying the existential instantiation rule just gives a name

to that object.

So, Existential Instantiation can be applied once, and then the

existentially quantified sentence can be discarded.

For example, we no longer need 3 x Kill(x, Ram) once we have added the

sentence Kill (Hari, Ram).



Simple Proof Examplel
* Suppose we have the following sentences in the KB:

— Anything that barks 1s a dog.
— Fido barks.

— prove that Fido is a dog.



* Step 1: State the facts you know 1n FOL

— We know anything that barks 1s a dog. State this fact in FOL.:

a. VvxBarks(x) = Dog(x)

* This says “If x barks then x is a dog”.
— We know that Fido barks. State this fact also in FOL.:

b. Barks(Fido)



Step 2: Remove all quantifiers
— Apply the Universal Instantiation inference rule to remove
the universal quantifier () in sentence a

— The result 1s:

c. Barks(Fido) = Dog(Fido)



* Now KB in propositional form is:

Barks(Fido)
Barks(Fido) = Dog(Fido)

* Step 3: See what inference rules can be applied.
— Think about what we want to do: Eliminate the implication, leaving the
sentence “Dog(Fido)”
— How can we so this?
— Use Modus Ponens

D. Dog(Fido)



* CNF Conversion summarized algorithm:
— Above descriptive steps of CNF conversion can be summarized in the
following steps
1. Elinunate implications and bi-implications as in propositional case
2. Move negations mward using De Morgan's laws
plus rewnting " ¥xPas 3y Pand ~3xPasVx P

3. Eliminate double negations
4. Rename bound vanables 1f necessary so each only occurs once

e.2. YxP(x)vIxQ(x) becomes YxP(x)vivQO(y)
5. Use equivalences to move quantifiers to the left
e.2. YaP(x)AQ becomes Yx (P(x)AQ) where x 1s not n 0
e.2. YaP(x)A3vO(v) becomes Yx3y(P(x)AQ(y))
6. Skolenuse (replace each existentially quantified variable by a new term)
3xP(x) becomes P(a0) using a Skolem constant a0 since 3x occurs at the outermost level

¥r3vP(x. y) becomes P(x. fo[x)) using a Skolem function /o since 3y occurs within ¥x

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them
8. Use distribution laws to get CNF and then clausal form



The resolution inference rule:

— Two clauses, which are assumed to be standardized apart so that they

share no variables, can be resolved if they contain complementary literals.

— Propositional literals are complementary if one is the negation of the
other; first-order literals are complementary if one unifies with the

negation of the other. Thus, we have

VeV,  mgVeeVmg
SUBST(B, by V- Vg Vg Voo VB Vg Ve Vg Vg VeV mp)




Resolution Algorithm

* Algorithm:
— Convert KB into first order logic expressions.
— Convert knowledge base (FOPL logic expressions) into CNF
— convert the negation of query into CNF and then add them into KB.

— Repeatedly apply resolution to clauses or copies of clauses(a copy of a
clause is the clause with all variables renamed) until either the empty

clause is derived or no more clauses can be derived.

* If the empty clause is derived , answer = Yes ( query follows form
knowledge base).
* Otherwise answer = No ( query does not follow from knowledge

base)



Example of resolution refutation

* Example: Consider the following statements:
— Everyone who loves all animal 1s loved by some one.
— Jack is loves all animal

— Query: Jack 1s loved by someone.



* KB in FOPL:
— Vx [V yAnmal(y) = Loves(x, y)] = [3 y Loves(y, x)] .

— V y Animal(y) = Loves(jack, y)

*  Query in FOPL.:

— 3dy Animal(y) = Loves(y, jack)

* Negaton of query:
— Vy — Animal(y) = — Loves(y, jack)



KB and Query in CNF:

* [Animal (F(x)) V Loves(G(x), x)]

* [—Loves(x, F(x)) V Loves(G(x), x)
* — Animal(y) V Loves(jack, y)

* Animal(y) V 7 Loves(y, jack)



— Animal(y) V Loves(jack, y) Animal(y) V — Loves(y, jack)

Hence jack 1s loved by someone



Example of resolution refutation

1. Anyone passing his history exams and winning the lottery is
happy.

2. Anyone who studies or is lucky can pass all his exams.
3. John did not study but John is lucky.
4. Anyone who is lucky wins the lottery.

query: “Is John happy?”.
Use the resolution refutation algorithm to answer the given query.



(a) Translate the following four English sentences to first order logic (FOL).

1. Anyone passing his history exams and winning the lottery is
happy.

2. Anyone who studies or is lucky can pass all his exams.
3. John did not study but John is lucky.
4. Anyone who is lucky wins the lottery.

(b) Convert them to conjunctive normal form (CNF).

(c) Answer the query “Is John happy?”. Use the resolution refutation
algorithm.



(a)Translate the following four English sentences to first
order logic (FOL).
1. Anyone passing his history exams and winning the lottery 1s

happy. Vx Pass(x. HistoryExam) A Win(x. Lottery) = Happy(x)

2. Anyone who studies or 1s lucky can pass all his exams.
3. John did not study but John is lucky.

4. Anyone who 1s lucky wins the lottery.



1. Anyone passing his history exams and winning the lottery 1s

happy.
e Vx Pass(x. HistoryvExam) A Win(x. Lottery) = Happy(Xx)

2. Anyone who studies or 1s lucky can pass all his exams.
VxVy Study(x) v Lucky(x) = Pass(x.y)
3. John did not study but John 1s lucky.

4. Anyone who 1s lucky wins the lottery.



1. Anyone passing his history exams and winning the lottery is

happy.
PRy Vx Pass(x. HistoryExam) A Win(x, Lottery) = Happy(x)

2. Anyone who studies or 1s lucky can pass all his exams.
VaxVy Study(x) v Lucky(x) = Pass(x.y)
3. John did not study but John is lucky.
—Study(John) A Lucky(John)

4. Anyone who 1s lucky wins the lottery.



1. Anyone passing his history exams and winning the lottery is

happy.
PRy Vx Pass(x, HistoryExam) A Win(x, Lottery) = Happy(x)

2. Anyone who studies or 1s lucky can pass all his exams.
VaVy Study(x) v Lucky(x) = Pass(x.y)
3. John did not study but John 1s lucky.
—Study(John) A Lucky(John)

4. Anyone who 1s lucky wins the lottery.
Vx Lucky(x) = Win(x. Lottery)



(b) Convert them to conjunctive normal form (CNF).

1 Vx Pass(x, HistorvExam) A Win(x, Lottery) = Happy(x)

o

VxVy Study(x) v Lucky(x) = Pass(x.y)

3 —Study(John) A Lucky(John)

4 Vx Lucky(x) = Win(x. Lottery)

First: Implication elimination



[ )

—{Pass(x. HistoryExam) A Win(x. LotTery)] v Happy(x)
—{Study(x) v Lucky(x)|v Pass(x.y)
—Study(John) n Lucky(John)

—Lucky(x) v Win(x. Lottery)

Then: drop the “for all” quantifiers



[ )

—Pass(x. HistoryExam) v —Win(x. Lottery)| v Happy(x)

:—.Study(x) A —.Lucky(x)] v Pass(x.y)
—Study(John) n Lucky(John)

—Lucky(x) v Win(x. Lottery)

Then: move the negation inwards



o

—Pass(x. HistoryExam) v —Win(x. Lottery) v Happy(x)
[—Study(x) v Pass(x. y)] A [—tLucky(x) v Pass(x. y)]
—Study(John) A Lucky(John)

—Lucky(x) v Win(x. Lottery)

Then: distribute the ~ors”



—Pass(x. HistoryvExam) v —Win(x. Lottery) v Happy(x)

—Study(x) v Pass(x.y)
—Lucky(x) v Pass(x.y)

—Study(John)
Lucky(John)

—Lucky(x) v Win(x. Lottery)

Then: separate the ”and” sentences into individual sentences



(c) Query and resolution refutation

—Pass(x. HistoryvExam) v —Win(x. Lottery) v Happy(x)

—Study(x) v Pass(x.y)
—Lucky(x) v Pass(x.y)

—Study(John)
Lucky(John)

—Lucky(x) v Win(x. Lottery)

Knowledge Base (KB)




Note: Construct the resolution tree for the clauses given below as in propositional
logic but use the predicate resolution rule instead of resolution rule of
propositional logic.

1 —Pass(x, HistoryExam) v —Win(x. Lottery) v Happy(x)

2a —Study(x) v Pass(x.y)
2b —Lucky(x) v Pass(x.y)

3a —Study(John)
3b Lucky(John)

4 —Lucky(x) v Win(x. Lottery)

Q —Happy(John) The negation of our query




—Pass(x. HistoryExam) v —Win(x. Lottery) v Happy(x)

—Study(x) v Pass(x.y)

2b —Lucky(x) v Pass(x.y)
{x/John}
3a —Study(John)
3b Luckly(John)
4 —Lucky(x) v Win(x. Lottery)
Q  —Happy(John)




1 —Pass(x. HistorvExam) v —Win(x. Lottery) v Happy(x)

2a —Study(x) v Pass(x.y)
2b —Lucky(x) v Pass(x.y)

3a —Study(|John)
3b Lucky(John)

{x/John; y/HistoryExam}

4 —Lucky(x) v Win(x. Loﬁ*ry)

—Pass(John. HistorvExam) v —Win(John. Lottery)

Q  —Happy(John)




1 —Pass(x, HistoryExam) v —Win(x. Lottery) v Happy(x)

2a —Study(x) v Pass(x.y)
2b —Lucky(x) v Pass(x.y)

3a —Study(John)
3b Lucky(John)

4 —Lucky(x) v Win(x. Lottery)|  {x/John}

—Pass(John, Histor)].Etam;th(John. Lottery)

—Lucky(John) v —Win(John. Lottery)




1 —Pass(x. HistoryExam) v —Win(x. Lottery) v Happy(x)

2a —Study(x) v Pass(x.y)
—Lucky(John)

3a —Study(John)
3b Lucky(John)

4 —Lucky(x) v Win(x, Lottery)|  {x/John}

—Pass(John. Histo;}lE.tam.)x_am lohn, Lottery)

—Lucky(John) v —Win(John. Lottery)




1 —Pass(x. HistoryExam) v —Win(x. Lottery) v Happy(x)

2a —Study(x) v Pass(x.y)

—Lucky(John)

3a —Study(Jghn)
3b Lucky(John)

4 —Lucky(x) v Win(x. Lottery)

—Pass(John, HistoryExam) v —Win(John. Lottery)

—Lucky(John) v —Win(John. Lottery)




Forward Chaining

Scenario: Determine the color of a pet named Fritz based on given facts and rules.
Facts:

e Fritz croaks.
e Fritz eats flies.

Rules:

1. If X croaks and X eats flies, then X is a frog.
2. If Xis a frog, then X is green.

3. If X chirps and X sings, then X is a canary.
4. If Xis a canary, then X is blue.

Process:

1. Start with the known facts: Fritz croaks and Fritz eats flies.

2. Apply Rule 1: Since Fritz meets the conditions (croaks and eats flies), we conclude that Fritz is a
frog.

3. Apply Rule 2: Now that we know Fritz is a frog, we can conclude that Fritz is green.

In this example, forward chaining starts with the available data (facts) and applies rules to derive new
information until reaching a conclusion.



Backward Chaining
Scenario: Prove that John is the tallest boy in his class.
Goal: Show that John is the tallest boy.
Facts and Rules:

e John s taller than Kim.

e Kim is shorter than everyone else in the class except John.
e Johnis aboy.

e Kimisagirl.

Process:

1. Start with the goal: Is John the tallest boy?

2. Assume John is the tallest and check if this leads to contradictions or supports from known
facts:Check if John being taller than Kim supports the goal.

3. Since all conditions for the goal are satisfied, we conclude that John is indeed the tallest boy in his
class.

In this example, backward chaining begins with the goal and works backward through the rules to verify if
it ran be ciinnarted by avietina facte



Unification

Unification is the process of finding substitutions that make different logical

expressions look identical.

takes two sentences and returns a list of substitutions(unifier) to make two

sentences match, or failure if no match possible.

i.e., UNIFY(p, q)=0 , are matched where 0 is the list of substitutions in p and

q



Unification rules:

1. Function symbols and predicate symbols must have identical names and

number of arguments.
2. Constant symbols unify with only identical constant symbols.

3. Variables unify with other variable symbols, constant symbols or

function symbols

4. Variable symbols may not be unified with other terms in which the

variable itself occurs.

* For example: x can not unify with G(x) since this will lead to G(G(G(....G( x))))



* Example: unification

pq 0 ............
Knows(Johnx)  Knows(fohnJane)  {x/Jane)
Knows(John.x) ~ Knows(yOl) - {x/OlyJohnj -
Knows(John.x) ‘Knows(y.Mother(y)) {y/John.x/Mother(John)}}
Knows(John.x) Knows(x.0) - {fal} '

— Last unification is failed due to overlap of variables
— 1.e., x can not take the values of John and OJ at the same time.
— We can avoid this problem(name clashes ) by renaming ( standardizing

apart)

— E.g., Unify{KnowsUohnx)  Knows(zOJ) } = {x/0J, ZJohn)



Semantic Network
* A semantic net (or semantic network) is a knowledge
representation technique used for propositional information. So it

is also called a propositional net.

* Mathematically a semantic net can be defined as a labeled
directed graph.

* consist of:
— nodes,

— links (edges) and
— link labels.



Nodes:

— In the semantic network diagram, nodes appear as circles or ellipses or
rectangles to represent objects such as physical objects, concepts or situations.
Links:
— appear as arrows to express the relationships between objects, and
link labels:

— specify particular relations. Relationships provide the basic structure for

organizing knowledge.

— The objects and relations involved need not be so concrete.

As nodes are associated with other nodes semantic nets are also

referred to as associative nets.



Semantic Network

S\Mﬂq -~ N\

SubsetOf \
Mde
Pﬂ'sons Pm
MemberOf MemnberOFf

( m ) _siwor L“’ 1

In the above figure all the objects are within ovals and connected using labelled arcs.

Note that there is a link between Jill and FemalePersons with label MemberOf. Simlarly
there is a MemberOf link between Jack and MalePersons and SisterOf link between Jill
and Jack.

The MemberOf link between Jill and FemalePersons indicates that Jill belongs to the
category of female persons.



Examplel: semantic network

* Represent the following fact in semantic network
— Tom is a cat.
— Tom caught a bird.
— Tom is owned by John.
— Tom is ginger in color.
— Cats like cream.
— The cat sat on the mat.
— Acatis a mammal.
— Abird is an animal.
— All mammals are animals.

— Mammals have fur.






Bayes’ Rule

Bayes' theorem is stated mathematically as the following equation:
P(AIB)=P(BIA)* P(A)/P(B)

where Aand B areeventsand P (B )#0

P (A | B) is a conditional probability: the likelihood of event A occurring given that B is true.
P (B A)is also a conditional probability: the likelihood of event B occurring given that As

true.
P (A)andP (B) are the probabilities of observing A and B independently of each other; this
is known as the marginal probability.



Bayes Rule more Simply

It tells us how often A happens given that B happens, written P(A|B), when we know how often
B happens given that A happens, written P(B|A), and how likely A and B are on their own.

P(A|B) is “Probability of A given B”, the probability of A given that B happens
P(A) is Probability of A
P(B|A) is “Probability of B given A”, the probability of B given that A happens
P(B) is Probability of B



Naive Bayes Rule

The term "naive" in Naive Bayes arises from its strong and often unrealistic

assumption that all features are independent given the class label.

While this may not hold true in many situations, it allows for efficient
computation and has proven effective in various applications, particularly when

dealing with large datasets where computational efficiency is crucial.



German Swiss Speaker Example

There are about 8.4 million people living in Switzerland. About 64 %
of them speak German. There are about 7500 million people on
earth.

If some aliens randomly beam up an earthling, what are the chances
that he is a German speaking Swiss?

We have the events
S: being Swiss

GS: German Speaking



P(S)=8.4/7500=0.00112

If we know that somebody is Swiss, the probability of speaking German is 0.64. This
corresponds to the conditional probability

P(GS|S)=0.64

So the probability of the earthling being Swiss and speaking German, can be calculated by
the formula:

P(GS|S)=P(GSNS)P(S)

inserting the values from above gives us:
0.64=P(GSNS)/0.00112

and

P(GSNS)=0.0007168

So our aliens end up with a chance of 0.07168 % of getting a German speaking Swiss
person.

93



Bayesian Belief Network

Bayesian belief network is key computer technology for dealing with probabilistic
events and to solve a problem which has uncertainty. We can define a Bayesian
network as:

"A Bayesian network is a probabilistic graphical model which represents a set of
variables and their conditional dependencies using a directed acyclic graph.”

It is also called a Bayes network, belief network, decision network, or Bayesian
model.

Bayesian networks are probabilistic, because these networks are built from a
probability distribution, and also use probability theory for prediction and anomaly
detection.



The generalized form of Bayesian network that represents and solve
decision problems under uncertain knowledge is known as an Influence
diagram.

A Bayesian network aranh is made 1in of nodes and Arcs (directed links),
where: Node

N
E



o Each node corresponds to the random variables, and a variable can be continuous or
discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities
between random variables. These directed links or arrows connect the pair of nodes in
the graph.

These links represent that one node directly influence the other node, and if there is no
directed link that means that nodes are independent with each other
o Inthe above diagram, A, B, C, and D are random variables represented by the
nodes of the network graph.
o |f we are considering node B, which is connected with node A by a directed
arrow, then node A is called the parent of Node B.

o Node C is independent of node A.



Each node in the Bayesian network has condition probability distribution
P(X; |Parent(X,) ), which determines the effect of the parent on that node.

Bayesian network is based on Joint probability distribution and conditional
probability. So let's first understand the joint probability distribution:



If we have variables x1, x2, x3,....., Xn, then the probabilities of a
different combination of x1, x2, x3.. xn, are known as Joint probability
distribution.

P[X., X, Xa,....., X.], it can be written as the following way in terms of
the joint probability distribution.

= P[Xq] X5, Xgy.eenp Xp]P[Xo, Xgpeveeey X, ]
= P[X4] X9, Xagy.eeeey X JPXoIXs, ..., Xo)oo . PIX 4 X IP[X ]
In general for each variable Xi, we can write the equation as:

P(Xi[Xiqyee...... , X;) = P(X, [Parents(X,))



Example

Harry installed a new burglar alarm at his home to detect burglary. The alarm
reliably responds at detecting a burglary but also responds for minor earthquakes.
Harry has two neighbors David and Sophia, who have taken a responsibility to
inform Harry at work when they hear the alarm. David always calls Harry when he
hears the alarm, but sometimes he got confused with the phone ringing and calls
at that time too. On the other hand, Sophia likes to listen to high music, so
sometimes she misses to hear the alarm. Here we would like to compute the
probability of Burglary Alarm.

Problem:

Calculate the probability that alarm has sounded, but there is neither a burglary,
nor an earthquake occurred, and David and Sophia both called the Harry.



Solution:

o  The Bayesian network for the above problem is given below. The network structure is showing that burglary and
earthquake is the parent node of the alarm and directly affecting the probability of alarm's going off, but David and
Sophia's calls depend on alarm probability.

o The network is representing that our assumptions do not directly perceive the burglary and also do not notice the
minor earthquake, and they also not confer before calling.

o  The conditional distributions for each node are given as conditional probabilities table or CPT.

o Eachrow inthe CPT must be sum to 1 because all the entries in the table represent an exhaustive set of cases for
the variable.

o In CPT, a boolean variable with k boolean parents contains 2X probabilities. Hence, if there are two parents, then

CPT will contain 4 probability values

List of all events occurring in this network:

o  Burglary (B)

o  Earthquake(E)
o Alarm(A)

o David Calls(D)

o~ 1N\



F | 0.998
P(D=T) | P(D=F)
0.91 0.09
0.05 0.95

0.001
Burglary B E Earthquake v
\A / B L PIA=T) | P(A=F)
T T 0.94 0.06
Alarm T F 0.95 0.04
F T 0.69 0.69
F F 0.999 | 0.999
D S
_ P(S=T) | PI(S=F)
: Sophia
David Calls calls 0.75 0.25
0.02 0.98




P(B= True) = 0.002, which is the probability of burglary.
P(B= False)= 0.998, which is the probability of no burglary.
P(E= True)= 0.001, which is the probability of a minor earthquake

P(E= False)= 0.999, Which is the probability that an earthquake not occurred.



Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

B E P(A= True) P(A= False)
True True 0.94 0.06
True False 0.95 0.04
False True 0.31 0.69

False False 0.001 0.999



Conditional probability table for David Calls:

The Conditional probability of David that he will call depends on the probability of Alarm.

True 0.91 0.09

False 0.05 0.95

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm."

True 0.75 0.25

False 0.02 0.98




From the formula of joint distribution, we can write the problem statement in the
form of probability distribution:

P(S, D, A, -B, =E) = P (S|A) *P (D|A)*P (A|~B * =E) *P (~B) *P (=E).
= 0.75* 0.97* 0.0071* 0.998*0.999
= 0.00068045.

Hence, a Bayesian network can answer any query about the domain by using
Joint distribution.



MCQ

1. Knowledge and reasoning also play a crucial role in dealing with
environment.

a) Completely Observable

b) Partially Observable

c) Neither Completely nor Partially Observable
d) Only Completely and Partially Observable

Answer: b



2. A) Knowledge base (KB) is consists of set of statements.
B) Inference is deriving a new sentence from the KB.
Choose the correct option.

a) Alis true, B is true

b) A is false, B is false

c) Alis true, B is false

d) Ais false, B is true

Answer: a



3. Wumpus World is a classic problem, best example of
a) Single player Game

b) Two player Game

c) Reasoning with Knowledge

d) Knowledge based Game

Answwer: C



4. ‘a |= B ‘(to mean that the sentence a entails the sentence B) if and only if, in
every model in which a is B is also

a) True, true
b) True, false
c) False, true

d) False, false

Answer: a



5. Which is not Familiar Connectives in First Order Logic?
a) and

b) iff

C) or

d) not

Answer: d



6. Inference algorithm is complete only if

a) It can derive any sentence
b) It can derive any sentence that is an entailed version
c) Itis truth preserving

d) It can derive any sentence that is an entailed version & It is truth preserving

Answer: d



7. What among the following could the universal instantiation of
For all x King(x) ~ Greedy(x) => Evil(x)

a) King(John) * Greedy(John) => Evil(John)

b) King(y) * Greedy(y) => EVvil(y)

c) King(Richard) * Greedy(Richard) => Evil(Richard)

d) All of the mentioned

Answer: d




8. Lifted inference rules require finding substitutions that make different logical
expressions looks identical.

a) Existential Instantiation
b) Universal Instantiation
c) Unification

d) Modus Ponen

Answer: c



9. Which of the following is not the style of inference?
a) Forward Chaining

b) Backward Chaining

c) Resolution Refutation

d) Modus Ponen

Answer: d



10. Which among the following could the Existential instantiation of 3x Crown(x)
OnHead(x, Johnny)?

a) Crown(John) » OnHead(John, Jonny)
b) Crown(y) » OnHead(y, v, X)

c) Crown(x) * OnHead(x, Jonny)

d) None of the mentioned

Answer: a



11. Translate the following statement into FOL.

“For every a, if ais a PhD student, then a has a master degree”
a) Vv a PhD(a) -> Master(a)

b) 3 a PhD(a) -> Master(a)

c) Alis true, B is true

d) A is false, B is false

Answer: a



12. What are Semantic Networks?
a) A way of representing knowledge
b) Data Structure

c) Data Type

d) None of the mentioned

Answer: a



13. Graph used to represent semantic network is
a) Undirected graph

b) Directed graph

c) Directed Acyclic graph (DAG)

d) Directed complete graph

Answer: b




14. Which of the following elements constitutes the frame structure?
a) Facts or Data

b) Procedures and default values

c) Frame names

d) Frame reference in hierarchy

Answer: a



15. What is the primary purpose of propositional logic?

A) To represent and manipulate numerical data

B) To reason about propositions that can be either true or false
C) To perform calculations with real numbers

D) To create graphical representations of data

Answer: b



16. Which of the following statements is true about the resolution rule in
propositional logic?

A) It can only be applied to disjunctive clauses.

B) It requires two clauses with a common literal.

C) It can derive new clauses by eliminating a variable.

D) It is used exclusively for proving theorems in predicate logic.

Answer: C



17. Inresolution refutation, what must be done to prove that a statement P is false?
A) Add P to the set of premises and derive a contradiction.
B) Negate P and add it to the set of premises.
C) Use only positive clauses to derive P.

D) Show that P can be derived from existing premises.

Answer: B



18. What is the primary assumption made by the Naive Bayes classifier regarding features?
A) Features are dependent on each other.

B) Features are conditionally independent given the class label.

C) Features have a normal distribution.

D) Features are uniformly distributed.

Answer: B



19. In a Bayesian network, what does each node represent?

A) A random variable
B) A deterministic function
C) A fixed value

D) An observation

Answer: A



20. Which of the following is a common application of Naive Bayes classifiers?
A) Image recognition

B) Spam detection in emails

C) Time series forecasting

D) Reinforcement learning

Answer: B



21. What is the purpose of the conditional probability tables (CPTs) in a Bayesian
network?

A) To store prior probabilities of nodes

B) To define the relationships between parent and child nodes
C) To calculate the joint probability distribution

D) To represent the overall structure of the network

Answer: B



22. When using Naive Bayes for classification, what type of probability does it
compute to make predictions?

A) Joint probability
B) Marginal probability
C) Posterior probability
D) Prior probability

Answer: C



23. In first-order predicate logic, what does a predicate represent?
A) A constant value

B) A relationship or property of objects

C) A logical connective

D) A quantifier

Answer: B



24. What is the main advantage of using semantic networks over traditional
databases?

A) They require less memory.

B) They allow for easy representation of complex relationships.
C) They are faster for numerical computations.

D) They can only represent simple facts.

Answer: B



25. What is a belief network primarily used for?

A) Storing large datasets

B) Representing conditional dependencies among random variables
C) Performing arithmetic calculations

D) Visualizing data trends

Answer: B



26. What does inference in a belief network typically involve?
A) Summing all possible outcomes

B) Calculating joint probabilities for all variables

C) Updating beliefs based on new evidence

D) Finding deterministic relationships between variables

Answer: C



27. What is the primary function of logical connectives in propositional logic?
A) To represent numerical values

B) To construct complex sentences from simpler ones

C) To define the truth values of propositions

D) To eliminate redundancy in statements

Answer: B



28. Which of the following forms represents a conjunction of disjunctions of
literals?

A) Conjunctive Normal Form (CNF)
B) Disjunctive Normal Form (DNF)
C) Normal Form

D) All of the mentioned

Answer: A



29. Which of the following is an example of a contradiction?

A) pV~p
B) pA~p
C) p—p
D) p«p



30. The contrapositive of the statement "If p, then q" is:

A) If gthenp
B) If ~p, then ~q
C) If ~q then ~p
D) If p then ~q
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