
TEMPLATES

TEMPLATES

Templates are a relatively new addition to C++. They allow you to write generic

classes and functions that work for several different data types. The result is

that you can write generic code once and then use it over again for many

different uses. C++ uses the templates to enable generic techniques. Generic

programming is about generalizing software components so that they can be

easily reused in a wide variety of situations.

In C++, class and function templates are particularly effective mechanisms for

generic programming because they make the generalization possible without

sacrificing efficiency.

FUNCTION TEMPLATES
int sum(int a, int b)

{

return (a+b);

}

The above code is an example of a normal function. It takes two integer values, sums

them and returns the sum. However, If we try to call the sum function as sum(2.3,4.5),

the compiler will throw an error as the sum function is designed to work on integer

values only. We cannot pass other data types to the function. To make the above

function flexible, C++ has introduced the concept of templates.

In C++, function overloading allows defining multiple functions with the same names

but with different arguments. In a situation, where we need to define functions with

the same body but of different data types we can use function overloading. But while

overloading a function, different data types will need different functions, and hence

the function needs to be rewritten several times for each data type. This is time

consuming and space consuming.

FUNCTION TEMPLATES
So C++ introduced the new concept of function template. Function templates are special

functions that can operate with generic types. It is the function which is written just for once,

and have it worked for many different data type. The key innovation in function templates is to

represent the data type used by the function not as a specific type such as int, float, etc., but

as a name that can stand for any type.

template <class T>

return_type function_name(T type argument){

// body

 }

The template keyword informs the compiler that we’re about to define a function template.

The keyword class, within angle brackets, acts as the type. We can define our own data type

using classes, so there’s no distinction between types and classes. The variable following

keyword class (‘T’ in above syntax) is called the template argument.

FUNCTION TEMPLATES

In the above example, sum() is a template function. It takes two arguments of T1 type and

returns a T1 type data equal to the sum of two arguments. Defining a function as a template

doesn’t generate code for different types, it is just a message to the compiler that the function

can be called with different data types. Thus, in main(), when sum(10,20) is called, the template

generates a function by substituting template argument (T1) with int. This is called instantiating

the function template, and each instantiating version of the function is called template

function. When sum(11.5,13.1) is invoked, instantiating of the template by float takes place and

another template function of float type is created. Here the function template sum can take

arguments of any type(int, float,char etc….)

#include <iostream>

using namespace std;

template <class T1>

T1 sum(T1 a, T1 b)

{

return (a+b);

} }

int main()

{

cout << sum(10, 20) << endl; //calling the function the function template sum for the integer values

cout << sum(11.5, 13.1) << endl; //calling the function the function template sum for the float values

return 0;

FUNCTION TEMPLATE WITH MULTIPLE
ARGUMENTS

We can use more than one generic type in a function template. They are declared as a comma -

separated list within the template specification.

template <class T1, class T2, ...>

returntype functionname(arguments of type T1, T2, T3...)

{

// body

}

OVERLOADING TEMPLATES

#include<iostream>

using namespace std;

//template

template<class T>

T find_max(T a, T b)

{

if(a>b)

}

return a;

else

return b;

//normal function having same name as template

float find_max(float x, float y)

{

if(x>y)

return x;

else

return y;

}

int main()

{

int p = 15, q = 12,r;

float c = 18.9, d = 25.009,e;

r = find_max(p,q); //template find_max is called.

e = find_max(c,d); //normal function find_max is called.

cout<<"The greatest integer value is "<<r<<endl;

cout<<"The greatest float value is "<<e;

return 0;

}

Overloading with function templates

Output:

The greatest integer value is 15

The greatest float value is 25.009

In the above example, the find_max() function is overloaded. Two functions of same name

and same arguments are declared, one as a function template and other of type float. The

function template generates functions for every data type but nontemplate functions take

precedence over template function. Thus, find_max(c,d) invokes normal function as c and d

are of type float and find_max(x,y) invokes template function.

OVERLOADING TEMPLATES

#include<iostream>

using namespace std;

template<class T>

void display(T p)

{

cout<< p <<endl;

}

/ overloading template with other template having two arguments

template<class T>

void display(T p, int q)

{

for(int i = 0;i < q; i++)

cout<< p <<endl;

}

int main()

{

display(5); // the first template "display" is called for integer value.

display("hey", 3); //the second template "display" is called for string.

display(10.8,2); //the second template "display" is called for float value.

}

Overloading with other template

Output:

5

hey

hey

hey

10.8

10.8

The above example has two template functions that are overloaded. The display() function

chosen depends on number of arguments as the two functions are distinguished by the number

of arguments. Thus display(5) uses the first template function whereas display("hey", 3) and

display(10.8,2) uses the second template function.

CLASS TEMPLATES
Class template is a template used to generate template classes. Class templates are used to

construct classes having the same functionality for different data types. A class template

provides specification for generating classes based on parameters.

template <class T>

class classname

{

/*class member specification with anonymous type T wherever appropriate*/

};

Template class is an instance of a class template as a template function is an instance of a

function template.

Syntax(for defining the object of template class):

classname<type> objectname;

CLASS TEMPLATES

If the functions are defined outside the template class body, they should always be defined

with the full template definition. They must be written like normal functions with scope

resolution operator.

template <class T>

returntype classname <T>::functionname(arglist)

{

// body of function

}

Function Definition of Class Template

CLASS TEMPLATES
Function Definition of Class Template

#include<iostream>

using namespace std;

template<class T1>

class numbers

{

T1 a, b;

public:

numbers(T1 x, T1 y)

{

a = x;

b = y;

}

T1 getmax();

};

template<class T>

T numbers<T>::getmax() //getmax() must be defined outside the class using full template definition

{

if(a>b)

{

return a;

}

e l s e

{

return b;

}

int main()

{

numbers<int> obj1(5,9); //obj1 is of type int

numbers<float> obj2(3.4,1.5); //obj2 is of type float

int x = obj1.getmax();

float y = obj2.getmax();

cout<<"The greatest integer value is "<<x<<endl;

cout<<"The greatest float value is "<<y<<endl;

return 0;

}

Output:

The greatest integer value is 9

The greatest float value is 3.4

CLASS TEMPLATES

Like in function template, we can use more than one generic type in class template. Each type are

declared in Template specification, and they are separated by comma operator.

Syntax (for defining class template):

template <class T1, class T2, ... >

class classname

{

//body of class

};

Syntax (for defining object of the class):

template <type1, type2, ... > objectname;

Syntax (for defining member function outside class):

template <class T1, class T2, ... >

returntype classname<T1, T2, ...>::functionname (argumentlist)

{

// body of function

}

Class Template with multiple arguments

CLASS TEMPLATES
Function Definition of Class Template

#include <iostream> using

namespace std;

template<class T1, class T2>

class Record

{

T1 a;

T2 b;

public:

Record(T1 x, T2 y)

{

a = x;

b = y;

}

void show();

};

template<class T1, class T2>

void Record<T1,T2>::show()

{

cout << a << " and " << b << endl;

}

int main()

{

Record<int, char>Obj1(1,'A');
Record<float, char> Obj2(12.3,'B');

Obj1.show();

Obj2.show();

return 0;

}

Output:

1 and A

12.3 and B

The class ‘Record’ can take two generic

types to store the records of the two

types. Obj1 stores an int and a char

and Obj2 stores a float and a char.

NON-TEMPLATE TYPE ARGUMENTS

A nontype template argument provided within a template argument list is an expression whose

value can be determined at compile time. Such arguments must be constant expressions.

addresses of functions or objects with external linkage, or addresses of static class members.

Nontemplate arguments are normally used to initialise a class or to specify the sizes of class

members.

Syntax:

template <class T, int size>

class array

{

T a[size]; ...

......

}

};

#include <iostream>

using namespace std;

template <class T, int s>

class Array

{

T a[s];

public:

void input()

{

cout << "enter numbers " << endl;

for(int i=0; i<s; i++)

 cin >> a[i];

}

void display();

template <class T, int s>

void Array<T, s>::display()

{

for(int i=0; i<s; i++)

cout << a[i] << endl;

}

int main()

{

Array<int,4>a1;

a1.input();

a1.display();

Array<float,3>a2;

a2.input();

a2.display();

return 0;

}

Output:

enter numbers

2 3 4 5

2

3

4

5

enter numbers

2.5 3.2 2

2.5

3.2

2

NON-TEMPLATE TYPE ARGUMENTS

Template parameters may have default arguments. The set of default template arguments

accumulates over all declarations of a given template. The following example demonstrates this:

template<class T = int, int size = 10>

class Array

{

//body

};

int main()

{

//….

Array<float, 5> ftarray; //float array with size 5

//….

Array<double> darray; //double array with the default size of 10

//….

Array<> intarr; //default integer array with the default size of 10

//….

}

Default Arguments with Class Template
NON-TEMPLATE TYPE ARGUMENTS

// WAP to show the implementation of default argument with class template

template <class T, int s>
void Array<T, s>::sum()

{

#include <iostream>

using namespace std;
 template <class T=float, int s=2>
class Array
{

T sum = 0;

for(int i=0; i<s; i++)

 sum += a[i];
T a[s];

public:
void input();
void sum();

cout << "The sum is : " << sum << endl;

}
int main()

{
};
template <class T, int s>
void Array<T,s>::input()
{

cout << "For integer array of size 5" << endl;
Array<int,5> a1;

a1.input();

a1.sum();cout << "enter numbers " << endl;
for(int i=0; i<s; i++)
cin >> a[i];

cout << "For default values" << endl;

Array<>a2; //by default a2 object contains a float array with the size of 2

a2.input();

a2.sum();

 return 0;

}

}

Output:

enter numbers

1 2 3 4 5

The sum is : 15

For default values

enter numbers

1.1

2.2

The sum is : 3.3

NON-TEMPLATE TYPE ARGUMENTS
Default Arguments with Class Template

1.We can create a derived class which is a non-template class from a base class which is a

template class.

2.We can create a derived class which is a template class from a base class which is not a

template class.

3.We can create derived class which is a template class from a base class which is also a

template class with the same template parameters as in the base class

4.We can create a derived class which is a template class from a base class which is also

a template class with additional template parameters in the derived class than that of

the class

DERIVED CLASS TEMPLATE

1. If we don't add extra template parameter and supply the template argument of base

class with data type, we create a non-template derived class as:

DERIVED CLASS TEMPLATE

#include<iostream>

using namespace std;

template <class T>

class base

{

T data;

public:

base(){} base(T a){data = a;}

void display()

{

cout<<”data: ”<<data<<endl;

}

};

class derived1: public base<int>

{

public:

derived1(){}

derived1(int a): base<int>(a){}

};

int main()

 {

derived1 obj1(5);

obj1.display();

}

2. If we add extra template parameter and supply the template argument of base class with

data type, we create a derived class template as:

DERIVED CLASS TEMPLATE

#include<iostream>

using namespace std;

template <class T>

class base

{

T data;

public:

base(){}

base(T a)

{data = a;}

void display()

{

cout<<”data: ”<<data<<endl;
}

};

template <class T>

class derived2: public base<int>

{

public:

derived2(){}

derived2(int a, T b):

base<int>(a),data(b){}

void display()

{

cout<<”in base”;

base<int>::display();

cout<<””in derived, data: ”<<data<<endl; }

};

int main()

{

derived2<float> obj2(10, 12.34);

obj2.display();

}

3. If the base class template parameter is still useful in derived class, the derived class

is created as class template i.e., base and derived template classes have the same

template parameter.

DERIVED CLASS TEMPLATE

#include<iostream>

using namespace std;

template <class T>

class base

{

T data;

public:

base(){}

base(T a){data = a;}

void display()

{

cout<<”data:”<<data<<endl;

}

};

template <class T>

class derived3: public base<T>

{

public:

derived3(){}

derived3(T a): base<T>(a){}

};

int main()

{

derived3<int> obj3(5);

obj3.display();

}

4. We can also add an extra template parameter in the derived class along with the base

class template parameter

DERIVED CLASS TEMPLATE

#include<iostream>

using namespace std;

template <class T>

class base

{

T data;

public:

base(){}

base(T a){data = a;}

void display()

{

cout<<”data: ”<<data<<endl;

}

};

template <class T1, class T2>

class derived4: public base<T1>

{

T2 data;

public:

derived4(){}

derived4(T1 a, T2 b): base<T1>(a),data(b){}

void display()

{

cout<<”in base”;

base<T1>::display();

cout<<””in derived, data: ”<<data<<endl;

}

};

int main()

{
derived4<int. float> obj4(10, 12.34);

obj4.display();

}

5. The derived class template can be created from the base class which is not a class

template. In this case, a template parameter is added in the derived class during inheritance.

DERIVED CLASS TEMPLATE

#include<iostream>

using namespace std;

class base

{

int data;

public:

base(){}

base(int a){data = a;}

void display()

{

cout<<”data: ”<<data<<endl;

}

};

template <class T> class

derived5: public base

{

public:

derived5(){}

derived5(int a, T b): base(a),data(b){}

void display()

{

cout<<”in base”;

base::display();

cout<<””in derived, data: ”<<data<<endl;

}

};

int main()

{

derived5<float> obj5(25, 10.5);

obj5.display();

}

1.What is a function template?

a.A function that can work with multiple data
types

b.A function that is used to create a new classes
c. A function that can take any number of

arguments
d.A function that is used to create a new

functions

2. Which keyword is used to define a function
template in C++?

a. Function
b. Template
c. Typename
d. None

3. Which symbol is used to specify the template
parameter in a function template?

a. &
b. *
c. <>
d. None

4. What is the syntax for defining a function
template in C++?

a. Template <class T> void functionName(T arg)
b. Void functionName(T arg) template

<typename T>
c. Template <typename T> void

functionName(T arg)
d. None

5. What is the syntax for overloading function
template in C++?

a.Template <typename T> void functionName(T
arg) template <typename T, typename U> void
functionName(T arg, U u)

b.Template <typename T> void functionName(T
arg) void functionName(T arg, Int n)

c. Template <typename T, typename U> void
functionName(T arg, U u) template
<typename T> void functionName(T arg)

d.None

6. What is the purpose of function template
specialization in C++?

a. It allows for the template to be more flexible
b. It allows for the template to handle a specific

data type differently
c. It allows for the template to be more efficient
d. None

7. How do you declare an instance of a clas
template in C++?

a. ClassName objectName <T>
b. T className objectName
c. className <T> objectName
d. None

8. What is the syntax for class template
specialization in C++?

a. Template <T> class className <> {}
b. Class <> template className <T> {}
c. Template <> class className <T> {}
d. None

9. What is the syntax for defining a member
function of a class template in C++?

a.Template <typename T> void
ClassName<T>::void functionName(){}

b.ClassName<T>::template void
functionName(){}

c. Template <typename T> void
ClassName<T>::functionName(){}

d.None

10. What is the syntax for calling a function
template in C++?

a. FunctionName<N>(parameter);
b. FunctionName<T>(parameter);
c. FunctionName<T…>(parameter);
d. None

11. What is the syntax for calling a member
function of a class template in C++?

a. ObjectName.functionName<T>();
b. ObjectName.functionName<N>();
c. ObjectName.functionName<T…>();
d. None

12. What is a function template in C++?

a. A template that defines a function with a
generic type or types.

b. A template that defines a function with a
specific type.

c. A template that defines a function with a
specific number of parameters

d. None

We learned about generic programming by using template class and template function in

the early section. During the standardization of C++, Standard Template Library(STL) was

included. It provides general purpose, templatized classes and functions that implement

many popular and commonly used algorithms and data structures, for example, vector,

stack queue, list map, etc. As the STL is constructed from template classes, the algorithm

and data structure can be applied to any type of data.

INTRODUCTION TO STANDARD TEMPLATE LIBRARY

1. Containers
Containers are objects that hold other objects. It is a way in which data is organized in

memory. The STL containers are implemented by template classes and therefore can be easily

customized to hold different types of data. The STL defines ten containers that are grouped

into three categories:

a) Sequence containers

The sequence container is a variable-sized container whose elements are arranged in a strict

linear order.It supports insertion and removal of elements. Every data, user defined or built-in,

has a specific position in the container. Sequence containers store elements in a linear list. Each

element is related to one other element by its position along the line. They are decided into the

following:

i) Vector

ii) List

iii) Dequeue

INTRODUCTION TO STANDARD TEMPLATE LIBRARY

b) Associative Containers

An associative container is a variable-sized container that supports efficient retrieval of elements

based on keys. Like sequence container, it supports insertion and removal of elements, but

differs from a sequence in that it does not provide a mechanism for inserting an element at a

specific position. They are not sequential. There are four types of associative containers:

i) Set

ii) Multiset

iii) Map

iv) Multimap

c) Derived Containers

These containers are derived from sequential container. These are also known as container

adaptors. The STL provides three derived containers:

i) Stack

ii) Queue

iii) Priority_queue

INTRODUCTION TO STANDARD TEMPLATE LIBRARY

2. Algorithms

An algorithm is a procedure that is used to process the data contained in the containers.

STL provides more than sixty standard algorithms to support more extended or complex

operations. Standard algorithms also permit us to work with two different types of

containers at the same time. STL algorithms are not member functions or friends of

containers. They are standalone template functions. STL algorithm based on the nature of

operations they perform may be categorized as:

a) Mutating algorithms

b) b) Sorting algorithms

c) Set algorithms

d) Relational algorithms

e) Retrieve or non mutating algorithms

INTRODUCTION TO STANDARD TEMPLATE LIBRARY

3. Iterators
Iterators behave like pointers and are used to access individual elements in containers.

They are often used to traverse from one element to another, a process known as iterating

through the container.

That means if the iterator points to one element in the range then it is possible to increase or

decrease the iterator so that we can access the next element in the range.

Iterators connect algorithms and play a key role in the manipulation of data stored in the

containers.

There are five types of iterators: input, output, forward, bidirectional and random.

INTRODUCTION TO STANDARD TEMPLATE LIBRARY

1.What is a Standard Template Library in C++?

a.A library of generic algorithms, containers and
iterators.

b.A library of pre-written code for common
programming tasks.

c. A library of advanced programming
techniques in C++.

d.None

2. Which of the following is a container class in
the STL?

a. Sort
b. vector
c. transform
d. None

3. What is the syntax for creating a vector
container in the STL?

a. MyVector<int> vector;
b. Vector myVector<int>;
c. Vector<int> myVector;
d. None

4. What is the purpose of an algorithm in the
STL?

a. To create a container
b. To hold data in container
c. To perform a specific task on a container
d. None

3. What is the difference between a vector and
an array in the STL?

a.A vector is a dynamic array while an array is an
static array.

b.A vector can only hold primitive data types
while an array can hold any data type.

c. A vector is faster than an array
d.None

4. What is an algorithm in the STL?

a. A data structure that stores objects of a
particular type

b. A function that manipulates data stored in
containers.

c. An interator that allows access to elements
of a container

d. None

5. What is a function object in STL?

a. An object that stores data
b. An object that manipulates functions
c. An object that acts like a function
d. None

6. What is an iterator in the STL?

a. A function that returns the value of the last
element in a container

b. A function that inserts an element at the end
of a container.

c. A pointer to an element in a container
d. None

EXCEPTION HANDLING

ERROR HANDLING
The two most common types of bugs:

1.Logic error: Due to poor understanding of the problem and solution

procedure.

2.Syntactic error: Due to poor understanding of language itself.

We often come across some peculiar problems other than logic and syntax errors.

They are known as exceptions. Exceptions are run time anomalies or unusual

conditions that a program may encounter while executing. E.g. Division by

zero,access to an array outside its bound, running out of memory or disk space etc.

The purpose of the exception handling mechanism is to provide means to detect

and report “exceptional circumstances” so that appropriate action can be taken.

EXCEPTION HANDLING CONSTRUCTS (TRY,
CATCH, THROW)

Exceptions are the anomalous or unusual events that change the normal flow of

the program. Exception handling is the mechanism by which we can identify and

deal with such unusual conditions. This mechanism suggests a separate error

handling code that performs the following tasks:

1.Find the problem (Hit the exception).

2.Inform that an error has occurred (Throw the exception).

3.Receive the error information (Catch the exception).

4.Take corrective actions (Handle the exception).

The error handling code basically consists of two segments, one to detect errors

and to throw the exception, and the other to catch the exception and to take

corrective actions.

CONSTRUCTS OF EXCEPTION HANDLING
In C++, the following keywords are used for exception handling.

a) try

b) catch

c) throw

CONSTRUCTS OF EXCEPTION HANDLING
The catch block that catches the exception must immediately follow the try block that throws the

exception. The general form of these two blocks are as follows:

………..

………..

try

{
………. // block of statements which detects and

throw exception; // throws an exception.

………..

………..

}

catch (type arg)

{

………… // block of statements that handles the exception

………… // thrown by the try block.

…………

}

 …………

CONSTRUCTS OF EXCEPTION HANDLING

Try keyword is used to a block of statements surrounded by braces which may generate

exceptions. When an exception is detected, it is thrown using the throw statement in try

block, then the program control leaves the try block and enters the catch block

comparing the catch argument try and the exception thrown type. If the type of the

object matches the argument type in the catch statement, then the catch block is

executed for handling the exception. If they don't match, the program is aborted with

the help of the abort() function which is invoked by default. When no exception is

detected and thrown, the control goes to the statement immediately after the catch

block i.e. catch block is skipped. In handling exceptions we need to create a new kind of

entity called an exception class.

CONSTRUCTS OF EXCEPTION HANDLING
#include<iostream>

using namespace std;

int main()

{

int a,b,x;

cout<<”Enter the values of a and b: ”;

cin>>a>>b;

x = a-b;

try

{

if(x!=0)

 cout<<”The result of (a/x) is ”<<a/x<<endl;

else

 throw(x);

}

}

catch(int i)

{

cout<<”Division by zero. X = ”<<i<<endl;

}

return 0;

Output:

Enter the values of a and b: 4 2

The result of (a/x) is 2.

Output 2:

Enter the values of a and b: 8 8

Division by zero. X = 0

ADVANTAGE OVER CONVENTIONAL ERROR
HANDLING
The error handling mechanism is somewhat new and very convenient in case of object

oriented approach over conventional programming. When an error is detected, the

error could be handled locally or not locally. Traditionally, when the error is not

handled locally the function could

1.Terminate the program.

2.Return a value that indicates error.

3.Return some value and set the program in an illegal state.

The exception handling mechanism provides alternatives to these traditional techniques

when they are dirty, insufficient and error prone. However, in the absence of exception

all these three traditional techniques are used. Exception handling separates the error

handling code from the other code making the program more readable. If the exception

is not handled then the program terminates. Exception provides a way for code that

detects a problem from which it cannot recover to the part of the code that might take

necessary measures.

MULTIPLE EXCEPTION HANDLING

It is possible that a program segment has more than one condition to throw an exception. In such

cases, we can associate more than one catch statement with a try statement(much like the

conditions in a switch statement).

try

{

//try block

}

catch(type1 arg)

{

//catch block1

}

………..

………..

catch(typeN arg)

{

//catch blockN

}

MULTIPLE EXCEPTION HANDLING
#include<iostream>

using namespace std;

void test(int a, int b)

{

try

{

if (b < 0)

 throw b;

if(b == 0)

 throw 1.1;

cout << "The Quotient = " << (a/b) << endl;

cout<<”End of try block”<<endl;

}

catch(int c)

{
cout << "\nSecond Operand is less than zero" << endl;

cout<<”caught an integer”<<endl;

}

catch(double c)

{

cout<<"\nSecond operand is equal to zero"<<endl;

cout<<”caught a double”<<endl;

}

cout<<”End of try-catch system”<<endl;

}

int main()

{

test(12,3);

test(12, -3);

test(12,0);

return 0;

}

Output:

The Quotient = 4

End of try block

End of try-catch system

Second Operand is less than zero

caught an integer

End of try-catch system

Second operand is equal to zero

caught a double

End of try-catch system

RE-THROWING EXCEPTION
We can make the handler(catch block) to rethrow the exception caught without processing it. In such

situations, we may simply invoke “throw” without any argument.

throw;

This causes the current exception to be thrown to the next enclosing try/catch sequence and is caught

by a catch statement of that try/catch block.
#include<iostream>

using namespace std;

void Calculate(double a,double b)

{

}

cout<<”Inside the function”<<endl;

try

{

if(b==0)

throw b; //throwing double

else

cout<<"\nThe result is:"<<a/b<<endl;

}

catch(double)

{

//catch a double

cout<<"\nCaught double value inside the catch block of the function";

throw; //rethrowing double

}

int main()

{

cout<<”Inside the main block”<<endl;

try

{

calculate(10.5,2.0);

calculate(10.5,0.0);

}

catch(double)

{

cout<<"\nInside the Catch block if the main() function";

cout<<"\nException due to 0"<<endl;

}

return 0;

}

RE-THROWING EXCEPTION

Output:

Inside the main block

Inside the function

The result is 5.25

Inside the function

Caught double value inside the catch block of the function

Inside the Catch block if the main() function

Exception due to 0

CATCHING ALL EXCEPTION
In some situations, we may not be able to anticipate all possible types of exceptions and

therefore may not be able to design independent catch handlers to catch them. In such

circumstances, we can force a catch statement to catch all exceptions instead of a certain type

alone. This could be achieved by defining the catch statement using ellipses as follows:

catch(...)

{

//Statements for processing

//All exceptions

}

CATCHING ALL EXCEPTION
#include<iostream>

using namespace std;

void test(int x)

{

try

{

if(x == 0)

throw x;

if(x == -1)

throw ‘x’;

if(x == 1)

throw 1.0;

}

catch(...)

{

//catch all

cout<<”caught an exception”;

}

}

int main()

{

cout<<”Testing generic catch”<<endl;

test(-1);

test(0);

test(1);

return 0;

}

Output:

Testing generic catch

caught an exception

caught an exception

caught an exception

NOTE: It may be a good idea to use the catch(...) as a default statement along with other catch handlers so

that it can catch all those exceptions which are not handled explicitly. Remember, catch(..) should always

be placed last in the list of catch handlers. Placing it before other catch blocks would prevent those blocks

from catching exceptions.

EXCEPTION WITH ARGUMENTS

There may be situations where we need more information about the cause of exception. Let us

consider there may be more than one function that throws the same exception in a program. It

would be nice if we know which function threw the exception and the cause to throw an

exception. This can be accomplished by defining the object in the exception handler. This

means, adding data members to the exception class which can be retrieved by the exception

handler to know the cause. While throwing, a throw statement throws an exception class

object with some initial value, which is used by the exception handler.

#include<iostream>

using namespace std;

class argument {

int a, b;

public:

string msg;

argument() {

a= b= 0;

}

argument(string name)

{

msg = name;

}

void input()

{

cout << "Enter the value of a and b : ";

cin >> a >> b;

}

}

void calculate()

{

if(b == 0)

throw argument("Divided by Zero.");

if(b < 0)

throw argument("Divided by Negative number");

cout << "Quotient = " << a/b << endl;

}

};

int main()

{

argument A1;

A1.input();

try {

A1.calculate();

}

catch(argument A)

{

cout << "Exception : " << A.msg << endl;

}

return 0;

EXCEPTION WITH ARGUMENTS

EXCEPTION SPECIFICATION FOR FUNCTION
It is possible to restrict a function to throw only certain specified exceptions. This is achieved by

adding a throw list clause to the function definition. The general form of using an exception

specification is:

return_type function_name(arg_list) throw(type list)

{

//body of function

}

The type list specifies the type of exceptions that may be thrown. Throwing any other type of

exception will cause abnormal program termination. If we wish ro prevent a function from

throwing any exception, we may do so bymaking the type list empty i.e.

return_type function_name(arg_list) throw()

{

//function body

}

}

#include<iostream>

using namespace std;

void calculate(int a,int b) throw(int)

{

if(b==0)

throw 2.0;

if(b<0)

throw 1;

cout<<"\nQuotation is :"<<a/b;

}

int main()

{

int c,d;

cout<<"\nEnter the value of c and d:";

cin>>c>>d;

try {

calculate(c,d);

}

catch(double)

{

cout<<"\nException as Second operand is -ve";

}

return 0;

EXCEPTION SPECIFICATION FOR FUNCTION
Output1:

Enter the value of c and d:

5

0

Output2:

Enter the value of c and d:

5

-2

Exception as Second

operand is -ve

In first run, the calculate function is throwing double value which is not specified in the throw list. Hence

the program terminates. In second run, the calculate function is throwing an int exception, but there is no

catch handler for int. So the program terminates.

HANDLING UNCAUGHT AND UNEXPECTED EXCEPTIONS

Output:

Inside try block Program

is terminated....

}

Here, int is thrown but there is no catch handler to catch the int exception. So, the program is

terminates calling the test_handler() function.

If the exception is thrown and no exception handler is found(i.e. the exception is not caught) -

the program calls the terminate() function. We can specify our own termination function with

the set_terminate() function.

#include<iostream>

using namespace std;

void test_handler()

{

cout<<”Program is terminated….”;

}

int main()

{

set_terminate(test_handler);

try

{

cout<<”Inside try block.”<<endl;

throw 10;

}

catch(char c)

{

cout<<”caught exception”;

}

return 0;

Handling uncaught exceptions:

HANDLING UNCAUGHT AND UNEXPECTED EXCEPTIONS
Handling unexpected exceptions:

}

Here, calculate() function is trying to throw a double value which is not included in the throw

list, So, an unexpected exception occurs which calls the test_unexpected().

Output:

Program terminated due

to unexpected exception

Similar to uncatch exception, When a function attempts to throw an exception that is not in the

throw list, unexpected() function is invoked. Like in terminate() function, we can specify the

function that is called by the unexpected() with the help of set_unexpected() function.

#include<iostream>

using namespace std;

void test_unexpected()

{

cout<<”Program terminated due to unexpected exception”<<endl;

}

void calculate(int a, int b) throw(int)

{

if(b == 0)

throw ‘A’;

if(b<0)

throw 1.0; //double value is thrown which is not allowed

cout<<”Result is :”<<a/b<<endl;

}

int main()

{

set_unexpected(test_unexpected);

try

{

calculate(2,-7);

}

catch(int c)

{

cout<<”Integer Exception”<<endl;

}

catch(double d)

{

cout<<”Double Exception”<<endl;

}

return 0;

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

