
Polymorphism
&

Virutal Function

INTRODUCTION
Polymorphism is one of the crucial features of OOP which simply means “ one

name, multiple forms”. We have already seen how the concept of

polymorphism is implemented in the function overloading and operator

overloading. There are two types of polymorphism namely, compile time

polymorphism and run-time polymorphism.

At compile time, the compiler at the compile time knows all the matching

arguments, therefore the compiler is able to select the appropriate function for a

particular call at the compile time itself. This is called early binding or static

binding or static linking. Also known as compile time polymorphism. Early binding

simply means that an object is bound to its function call at compile time.

If appropriate member functions are chosen at run time rather than compile time,

this is known as runtime polymorphism or late binding or runtime binding or

dynamic binding. Dynamic binding(also known as runtime binding) means that the

code associated with a given procedure call is not known until the time of the call

at run-time. Since an appropriate function is called during the runtime it needs the

use of a pointer by making base class pointer points at different objects even that

of derived class we can execute different versions of virtual function. It is

associated with polymorphism and inheritance.

Run Time Polymorphism

Compile Time Polymorphism

NEED OF VIRTUAL FUNCTIONS
#include<iostream.h>

#include<conio.h>

class base

{

public: void

show() {

cout<<"you have called base class function";

public: void

show()

{

cout<<"you have called derived class function";

}

int main()

{

base *b;

derived d;

b=&d;//base pointer to derived object

b->show();

getch();

return 0;

}

Output:

you have called base class function

}
};

Class derived: public base
{

};

In the above program, even though the base pointer points to a derived class

object, it cannot access the unique public function of the derived class.

This is because the compiler ignores the content of the pointer and chooses a

member function that matches the type of pointer.

Here, *b is a pointer of base class "base" so b->show() only invokes the base class

member function even though it is pointing to the derived class object d.

In order to resolve this issue, we need a virtual function.

Here, A virtual function can be used to call appropriate derived class functions by

using keyword virtual.

A C++ virtual function is a member function in the base class and is re-

defined(overridden) in a derived class. It is declared using the virtual keyword. It is

used to tell the compiler to perform runtime polymorphism or dynamic linkage or

late binding on the function.

Syntax:

virtual void func_name() { }

void virtual func_name() { }

OR,

When there is a necessity to use the single pointer to refer to all the objects of

the different classes, we create the pointer to the base class that refers to all

the derived objects. But, when the base class pointer contains the address of

the derived class object, it always executes the base class function. This issue

can only be resolved by using the 'virtual' function. A 'virtual' is a keyword

preceding the normal declaration of a function. When the function is made

virtual, C++ determines which function is to be invoked at the runtime based on

the type of the object pointed by the base class pointer.

Virtual Function

Virtual Function
#include<iostream.h>

#include<conio.h>

class Base {

public:

virtual void show()

{cout<<"you have called Base class function";}

};

class Derived1:public Base {

public:

void show()

{

cout<<"you have called derived 1 class function"<<endl;}

 };

class Derived2:public Base {

public:

void show()

{ cout<<"you have called derived 2 class function"<<endl;

}};

int main() {

Base *b;

Derived1 d1;

Derived2 d2;

b=&d1;

b->show();

b=&d2;

b->show();

getch();

return 0;

}

Output:

you have called derived 1 class function

you have called drived 2 class function

Virtual Function
In the above program, base class pointer b is pointing to the objects d1 and d2 of

classes Derived1 and Derived2 respectively.

when b->show() is evaluated it actually refers to the show function of Base class

i.e. Base::show(); but this show() function is a virtual function and it instructs the

compiler to go and see another derived version of this function.

According to the object pointed by the base pointer, it looks into those derived

classes and calls the appropriate function.

In the first case, the base pointer points to object ‘d1’ of Derived1 class so it calls

show() function of Derived1 class and in second case, the base pointer points to

object ‘d2’ of Derived2 class so calls the show() function of Derived2 class.

PURE VIRTUAL FUNCTIONS AND ABSTRACT
CLASS
 A pure virtual function (or abstract function) in C++ is a virtual function in the base class for

which there is no implementation(no body).

A pure virtual function is one with an initialize of = 0 in its declaration. All the derived classes

must override the base class pure virtual function and provide implementations of those

functions. A class containing pure virtual functions cannot be used to declare an object of its

own. such classes are called abstract classes. The difference between virtual function and

pure virtual function is that a virtual function has an implementation and gives derived class

an option of overriding the virtual functions whereas the pure virtual function doesn’t

provide implementation and requires the derived class to override those functions.

class Test

{

// An abstract class

// Data members of class

};

public:

virtual void show() = 0;

/* Other members */

// Pure Virtual Function

PURE VIRTUAL FUNCTIONS AND ABSTRACT
CLASS
A class containing at least one pure virtual function is known as an abstract class.

We cannot create objects of abstract classes. But, we can create pointers for

abstract classes which is required for runtime polymorphism.

We must override the pure virtual function of an abstract class in the derived

class, otherwise, the derived class will also become an abstract class.

Normally, when creating a class hierarchy with virtual functions, in most of the

cases it seems that the base class pointers are used but the objects of base class

are rarely created. The concept of abstract classes seems useful in such scenarios.

Abstract classes mostly exist to act as a parent of the derived class.

PURE VIRTUAL FUNCTIONS AND ABSTRACT CLASS
class Derived: public Base

{

// C++ Program to illustrate the abstract class and
//virtual functions

#include <iostream>

using namespace std;

class Base

{

};

int y;

public:

void input() {

Base::input();
cout<<“Enter the value of y: “;
cin>>y;

}

};

int main()
{

}

protected:

int x;

public:
void sum() { //overriding pure virtual function
cout << "The sum is: "<< x+y<<endl; }

virtual void sum() = 0; // pure virtual function

virtual void input()

{

cout<<“Enter the value of x: “;
cin>>x; Derived d;

Base *bptr;

bptr = &d;

bptr -> input();

bptr -> sum();

Output:
Enter the value of x: 5

Enter the value of y: 4

The sum is: 11

}

return 0;

VIRTUAL DESTRUCTORS
Deleting a derived class object using a pointer of base class type that has a non-

virtual destructor results in undefined behavior. To correct this situation, the

base class should be defined with a virtual destructor.

// CPP program without virtual destructor causing undefined behavior

#include <iostream>

using namespace std;

class Base

{
public:

class Derived: public Base {

 public:

 Derived()
Base() { cout << "Constructing derived\n"; }
{

cout << "Constructing base\n";
}

~Base() {

cout<< "Destructing base\n";

}

};

~Derived() {

 cout << "Destructing derived\n";
}

};

VIRTUAL DESTRUCTORS
int main()

{

Base * b = new Base;

delete b;

cout<<”------------------------\n”;

Derived * d = new Derived;

delete d;

cout<<”------------------------\n”;

//calls Base constructor

//calls Base destructor

// calls Derived constructor

//calls Derived destructor

Base * b = new Derived;

delete b;

getch();

return 0;

}

// calls Derived Destructor

// calls Base Destructors

Output:

Constructing base

Destructing base

Constructing base

Constructing derived

Destructing derived

Destructing base

Constructing base

Constructing derived

Destructing base

VIRTUAL DESTRUCTORS
Making base class destructor virtual guarantees that the object of derived class is

destructed properly, i.e., both base class and derived class destructors are called.

// A program with virtual destructor

#include <iostream>

using namespace std;

class Base {

public:

Base()

{ cout << "Constructing base\n"; }

 virtual ~Base()

{ cout << "Destructing base\n"; } };

Virtual destructors are useful when you might potentially delete

an instance of a derived class through a pointer to base class.

As a guideline, any time you have a virtual function in a class,

you should immediately add a virtual destructor (even if it

does nothing).

class Derived : public Base {

public:

Derived()

{cout << "Constructing derived\n"; }

~Derived()

 { cout << "Destructing derived\n"; }

 };

int main() {

Base *b = new Derived;

delete b;

getch();

return 0;

 }

Output:

Constructing base

Constructing derived

Destructing derived

Destructing base

Multiple Choice
Questions on Virtual

Function

1. Which is used to create a pure virtual
function?
a) $
b) =0
c) &
d) !

2. Which is also called as abstract class?
a) virtual function
b) pure virtual function
c) derived class
d) base class

3.Where does the abstract class is used?
a) base class only
b) derived class
c) both derived & base class
d) virtual class

4.Pick out the correct option.
a) We cannot make an instance of an abstract
base class
b) We can make an instance of an abstract base
class
c) We can make an instance of an abstract
super class
d) We can make an instance of an abstract
derived class

5. What is meant by pure virtual function?
a) Function which does not have definition of
its own
b) Function which does have definition of its
own
c) Function which does not have any return
type
d) Function which does not have any return
type & own definition

6. Which is the correct syntax of defining a pure
virtual function?
a) pure virtual return_type func();
b) virtual return_type func() pure;
c) virtual return_type func() = 0;
d) virtual return_type func();

7. Pick the correct statement.
a) Pure virtual functions and virtual functions
are the same
b) Both Pure virtual function and virtual
function have an implementation in the base
class
c) Pure virtual function has no implementation
in the base class whereas virtual function may
have an implementation in the base class
d) The base class has no pure virtual function

8. Which is the correct statement about pure
virtual functions?
a) They should be defined inside a base class
b) Pure keyword should be used to declare a
pure virtual function
c) Pure virtual function is implemented in
derived classes
d) Pure virtual function cannot implemented in
derived classes

9. What will be the output of the following C++
code?
#include <iostream>
#include <string>
using namespace std;
class A{
 int a;
 public:
 virtual void func() = 0;
};
class B: public A{
 public:
 void func()
 { cout<<"Class B"<<endl; }
};
int main(){
 B b;
 b.func();
 return 0;
}
a) Class B
b) Error
c) Segmentation fault
d) No output

10. What will be the output of the following C++
code?
#include <iostream>
#include <string>
using namespace std;
class A{
 int a;
 public:
 virtual void func() = 0;
};
class B: public A{
 public:
 void func()
 { cout<<"Class B"<<endl; }
};
int main(){
 A a;
 a.func();
 return 0;
}
a) Class B
b) Error
c) Segmentation fault
d) No output

File Handling

STREAM INPUT/OUTPUT
A stream is an interface provided by I/O system to the programmer. A stream, in

general, is a name given to flow of data. In other words, it is a sequence of bytes.

The stream acts either as a source from which the input data can be obtained or

as a destination to which the output data can be sent. The source stream that

provides data to the program is called INPUT stream and the destination stream

that receives output from the program is called OUTPUT stream. Thus, a program

extracts the bytes from an input stream and inserts them into the output stream.

Different input devices like keyboard can send data to the input stream. Also, data

in the output stream can go to the output device like screen (monitor) or any other

storage device. In C++, there are predefined I/O stream like cin and cout which are

automatically opened where a program begins its execution.

STREAM INPUT/OUTPUT

STREAM CLASS HIERARCHY FOR CONSOLE I/O

The given figure shows a hierarchy of

stream classes in C++ used to define

various stream in order to deal with

both the console and disk files. From

the figure, it is clear that ios is a base

class. This ios class is declared as

virtual base class so that only one copy

of its members is inherited by its

derived classes: thereby avoiding

ambiguity.

The ios class comprises basic functions and constants required for input and output
operations. It also comprises functions related with flag strings.

istream and ostream classes are derived from ios and are dedicated to input and output

streams respectively. Their member functions perform both formatted and unformatted

operations. istream contains functions like get(), getline, read() and overloaded

extraction(>>) operators. ostream comprises functions like put(), write() and overloaded

insertion(<<) operators. The iostream class is derived from istream and ostream using

multiple inheritance. Thus, it provides the facilities for handling both input and output

streams. The class istream_withassign and ostream_withassign add assignment operator

to these classes. Again the classes ifstream and ofstream are concerned with file I/O

function. ifstream is used for input files and ofstream for output files. Also there is

another class of stream which will be used both for input and output. All the classes

ifstream, ofstream and fstream are derived from classes istream, ostream and iostream

respectively. streambuf is also derived from ios base class. filebuf is derived from

streambuf. It is used to set the file buffers to read and write. It also contains open() and

close() used to open and close the file respectively.

STREAM CLASS HIERARCHY FOR CONSOLE I/O

UNFORMATTED INPUT/OUTPUT

The general format for reading data from keyboard is :

cin>>var1>>var2>>......>>varn.

This statement will cause the computer to stop the execution and look for input

data from the keyboard. While entering the data from the keyboard, the

whitespace, newline and tabs will be skipped. The operator >> reads the data

character by character basis and assigns it to the indicated locations. Again, the

general format for displaying data on the computer screen is :

cout<<item1<<item2<<...........<<itemn;

Here, item1, item2,, itemn may be character or variable of any built-in data

type.

1. Overloaded Operators >> and <<:

These are another kind of input/output functions defined in classes istream and ostream to

perform single character input/output operations.

There are 2 types of get functions i.e. get(char*) and get(void) which help to fetch a

character including the blank space, tab and a new line character. get(char) assigns input

character to its argument and get(void) returns the input character.

char c;

cin.get(c) ; // obtain single character from keyboard and assign it to char c

OR

c=cin.get() ;

OR

cin>>c ; // this will skip white spaces, tabs, and newline

get():

2. get() and put():

put():
It is used to output a line of text character by character basis.

getline():
The getline() function reads a whole line of text that ends with a newline character.

The general syntax is:

cout.put (‘T’) ; // prints T

cout.put(ch) ; // prints the value of variable ch

cout.put(65) ; // displays a character whose ASCII value is 65 that is A

3. getline() and write():

cin.getline(line, size) ;

where, line is a variable, size is maximum number of characters to be placed.

Consider the following code:

char name[30] ;

cin.getline(name, 30)

or

cin>>name

string name;

getline(cin,name); // in case of variable declared as string

If we input the following string from keyboard:

“This is test string”.

cin.getline(name, 30) inputs 29 characters taking white spaces and one left null character. so, it

will take the whole line but in case of cin it takes only “This” as it doesn’t consider white spaces.

Example:
#include <iostream>

using namespace std;
int main()

{

Output:

First Run:
Enter city name: Kathmandu

City name : Kathmandu
Enter city name again : Lalitpur

New city name : Lalitpur

char city[20] ;

cout<< “Enter city name:\n” ;
cin>>city ;

cout<< “city name:”<<city<<”\n\n” ;
cout<< “Enter city name again:\n” ;

cin.getline (city, 20) ;
cout<< “New city name:”<<city<< “\n\n” ;

}

Second Run:
Enter city name : New Baneshwor

City name : New
Enter city name again : Old Baneshwor

New city name : Baneshwor

write():
This function displays an entire line of text in the output string.

The general syntax is:

cout.write(line, size)

where, line represents the name of string to be displayed and second argument size indicates

number of characters to be displayed.

#include <iostream>
using namespace std;

int main()
{

 Char str[30] = “HELLO WELCOME TO KEC”;
 cout.write(str, 30);

 cout.write(str, 8);
}

Output:

HELLO WELCOME TO KEC

HELLO WE

C++ supports a number of features that could be used for formatting the output. These features

include

ios class functions and flags

manipulators

width() - To specify the required field size for displaying an output value

Precision() - To specify the no. of digits to be displayed before and after a decimal point of a

float value.

fill() - To specify a character that is used to fill the unused portion of a field

setf() - To specify format flags that can control the form of output display (such as left- left-

justification and right-justification)

unsetf() - To clear flags specified

ios class functions and flags

FORMATTED INPUT/OUTPUT

FORMATTED INPUT/OUTPUT
1. width():

This function of ios class is used to define the width of the field to be used while displaying

the output. It is normally accessed with a cout object. It has the following form:

Example:

cout.width(6);

cout<<849<<endl;

cout<<45<<endl;

Output:

_ _ _849

45

The value 849 is printed right-justified in the first six columns. The

specification width(6) does not retain the setting for printing the

number 45.

This can be improved as follows:

cout.width(6);

cout<<849<<endl;

cout.width(6);

cout<<45<<endl;

Output:

---849

----45

cout.width(6); //sets field width to 6

FORMATTED INPUT/OUTPUT
2. fill():

This ios function is used to specify the character to be displayed in the unused portion of the

display width. By default, blank characters are displayed in the unused portion.

Syntax:

cout.fill(ch);

where ch is a character used to fill the unused space

Example:

int x = 456;

cout.width(6);

cout.fill(‘#’);

cout<<x<<endl;

Output:

###456

FORMATTED INPUT/OUTPUT
3. precision():

 This function belonging to ios class is used to specify maximum number of digits to be

displayed as a while in floating point number or the maximum number of digits to be displayed

in the fractional part of the floating point number. In general format, it specifies the maximum

number of digits including fractional or integer parts. This is because in general format the

system chooses either exponential or normal floating point format which best preserves the

value in the space available.

cout.precision(4);

Example:

float x=5.5005, y=66.769;

cout.precision(3);

cout<<x<<endl;

cout<<y<<endl;

Output:

5.5

66.8

4. setf():

The ios member function setf() is used to set flags and bit fields that controls the output in

other ways.

cout.setf(flag_value, bit_field_value);

Example:

int x = 456;

float y = 123.45;

cout.setf(ios::left, ios::adjustfield);

cout.width(6);
cout.fill(‘#’);

cout<<x<<endl;

Flag_value bit_field_value

ios::left
ios::right

ios::internal

ios::adjustfiled

ios::scientific

ios::fixed

tf(ios::scientific, ios::floatfield);
ios::floatfield

cout.se

cout<<y<<endl
ios::dec
ios::oct

ios::hex

ios::basefield

Output:

456###
1.234500e+02

FORMATTED INPUT/OUTPUT

The header file “iomanip” provides a set of functions called ‘manipulators’ which can be used

to manipulate the output formats. They provide the same features as that of the ios member

functions and flags. We can use two or more manipulators as a chain in one statement

cout<<manip1<<manip2<<item;

cout<<manip1<<manip2<<item<<manip3;

Non-parameterized manipulators
Parameterized manipulators

setw(int n) : equivalent to ios function width()

 setprecision(int n) : equivalent to ios function

precision()

setfill(char c) : equivalent to ios function

 fill()

setiosflags(flag) : equivalent to ios function setf()

resetiosflags(flag) : equivalent to ios function unsetf()

endl:

left:

right:

dec:

Hex:

Oct:

output new line and flush

sets ios::left flag of ios::adjustfield

sets ios::right flag of ios::adjustfield

sets ios::dec flag of ios::basefield sets

ios::hex flag of ios::basefield

sets ios::oct flag of ios::basefield

showpoint: sets ios::showpoint flag

scientific:

fixed:

sets ios::scientific flag of ios::floatfield

sets ios::fixed flag of ios::floatfield

FORMATTING WITH MANIPULATORS

FILE INPUT/OUTPUT WITH STREAMS
All the programs presented so far take input from standard input device(normally keyboard)

and output displayed on standard output device(normally monitor). The console stream

objects like cout and cin have been used for output and input respectively. However, many

applications may require a large amount of data to be read, processed, and also saved for

later use. In order to handle such a huge volume of data, we need to use some devices such as

floppy disks or hard disks to store the data. The data is stored in these devices using the

concept of files. A file is a collection of related data stored in a particular area on the disk.

Programs can be designed to perform the read and write operations on these files.

A program typically involves either or both the following kinds of data communication:

1. Data transfer between the console unit and the program

2. Data transfer between the program and a disk file.

FILE INPUT/OUTPUT WITH STREAMS

FILE INPUT/OUTPUT WITH STREAMS
File Stream

The I/O system of C++ handles file operations which are very much similar to the console

input and output operations. A file stream is an interface between the programs and the

files. The stream which supplies data to the program is called input stream and that which

receives data from the program is called output stream i.e. the input stream reads or

receives data from the file and supplies it to the program while the output stream writes

or inserts data to the file.

FILE INPUT/OUTPUT WITH STREAMS
Class Hierarchy for File Stream

FILE INPUT/OUTPUT WITH STREAMS
Class Hierarchy for File Stream

The I/O system of C++ contains a set of classes that define the file handling methods. These include

ifstream, ofstream and fstream. These classes are derived from fstreambase and from the

corresponding iostream class as shown in figure. These classes, designed to manage the disk files,

are declared in fstream and therefore we must include this file in any program that uses files.

ios: It stands for input output stream. This class is the base class for other classes in this class

hierarchy. This class contains the necessary facilities that are used by all the other derived classes for

input and output operations.

istream: istream stands for input stream. This class is derived from the class ‘ios’. This class handles

input stream. The extraction operator(>>) is overloaded in this class to handle input operations from

files to the program. This class declared input functions such as get(), getline() and read().

ostream: ostream stands for output stream. This class is derived from the class ‘ios’. This class

handles output stream.The insertion operator(<<) is overloaded in this class to handle output streams

to files from the program. This class declares output functions such as put() and write().

Class Hierarchy for File Stream
streambuf: This class contains a pointer which points to the buffer which is used to manage the input

and output streams.

fstreambase: This class provides operations common to the file streams. Serves as a base for fstream,

ifstream and ofstream class. This class contains open() and close() function.

ifstream: This class provides input operations. It contains an open() function with default input mode.

It inherits the functions get(), getline(), read(), seekg() and tellg() functions from the istream.

ofstream: This class provides output operations. It contains an open() function with default output

mode. It inherits the functions put(), write(), seekp() and tellp() functions from the ostream.

fstream: This class provides support for simultaneous input and output operations. It

inherits all the functions from istream and ostream classes through iostream.

filebuf: Its purpose is to set the file buffers to read and write. We can also use the file buffer member

function to determine the length of the file.

OPENING AND CLOSING FILES

Opening Files using Constructor:
We know that a constructor is used to initialize an object while it is being created. Here, a

filename is used to initialize the file stream object. This involves the following steps:

A file can be opened in two ways:

1.Using the constructor function of the class: This method is useful when we use only one file in

the stream.

2.Using the member function open() of the class: This method is used when we wat to manage

multiple files using the stream.

1.Create a file stream object to manage the stream using the appropriate class.(.i.e. If we are

writing to a file we create an object of class ofstream and if we are reading from the file, we create

an object of the class ifstream).

2.Initialize the file object with the desired filename.

For example, the following statement opens a file named results for the output:

ofstream outfile(“results”); //output only

This creates outfile as an object of the class ofstream that manages the output stream. This object

can be any valid c++ name such as o_file, myfile, fout etc. This statement opens a file named “results”

and attaches it to the output stream outfile.

OPENING AND CLOSING FILES
Opening Files using open():
As stated earlier, the function open() can be used to open multiple files that use the same stream

object. For example,, we may want to process a set of file sequentially. In such cases, we may

create a single stream object and use it to open each file in turn. This is done as follows:

file-stream-class stream-object;

stream-object.open(“Filename);

Example:

ofstream outfile; //create stream(for output)

outfile.open(“Data1”); //connect output stream (outfile) to Data1 File.

………….

outfile.close(); //disconnect output stream(outfile) from Data1 File

outfile.open(“Data2”); //connect output stream (outfile) to Data2 File.

………….

outfile.close();

………….

//disconnect output stream(outfile) from Data2 File

OPENING AND CLOSING FILES

Opening Files using open():

Here, we are opening the file Data1 and Data2 using the object “outfile” of the ofstream class. This

means that we are only allowed to perform write operations in multiple files using the same output

stream object “outfile”.

Suppose we want to perform both reading and writing operations on the same file, then we need to

create an object of fstream class. This is done as follows:

fstream finout;

finout.open(“file_name”,”opening_mode”);

ios: : in

(input)

ios: : out

(output)

ios::app

(append)

ios: : trunc

(truncate)

ios: : binary

ios: : ate (at

the end)

When a file is opened in this mode, the file is opened as a binary file and not as an ASCII text file.

When a file is opened in this mode, the file is truncated if a file with the specified already exists.

This mode opens a file for writing. (default for ofstream) . When a file is opened in this mode, it also opens in the ios::trunc

mode by default. If specified already exists, it is truncated to zero length otherwise a new file will be created.

When a file is opened in this mode, a file access pointer is set at the end of the file. The ios::ate is usually compiled with ios::in

or ios::out for reading and writing.

This mode opens a file for reading. (Default for istream). The file open will be unsuccessful if we try to open a non -existing

file.

When a file is opened in this mode, the file is opened in the write mode with the file access pointer at the end of the file. This

mode can be used only with output files.

OPENING AND CLOSING FILES
Opening Files using open():
File opening modes can be on of the following:

READ/WRITE FROM FILE

2. Sequential input and output operations:

a) put(): The function put() writes a single character to the associated output file

stream.

1. Insertion operator(<<) and Extraction Operator (>>):

Like console input and output, insertion and extraction operators can also be used for the input and

output operation in a file.

ofstream fout(“database”);

It creates fout as an object of the class ofstream and binds the fout object with the file

named“database”.

string str = “hello”; fout<<str; // writes str to the file database

attached to fout.

READ/WRITE FROM FILE
#include<iostream>

#include<fstream>

#include<string.h>

using namespace std;

int main()

{

char text[] = “A test program for put() function.”;

ofstream fout(“hello”); // create and open a file named hello for write operation

for(int i = 0 ; i< strlen(text) ; i++) //loop for each character

{

fout.put(text[i]); // writing each character to file using put() function;

}

}

b) get(): The function get() reads a single character from the associated input file

stream.

READ/WRITE FROM FILE
#include<iostream>

#include<fstream>

using namespace std;

int main()

{

ifstream infile("hello");

char ch;

while(1)

}

{

ch = infile.get();

if(infile.eof() == 1)

{

break;
}
cout<<ch;

}
return 0;

READ/WRITE FROM FILE

3. write() and read() functions

Machines use binary format to store the information rather than ASCII format. In many cases, binary

format saves disk space and makes storing and retrieval faster. To store and retrieve binary data,

member functions write() and read() of ifstream and ofstream are used respectively.

write(): The write() member function is used to binary the information in a binary file. The write() is

used as follows:

file_obj.write((char *)&variable , sizeof(variable));

write() function takes two arguments:

The first is the address of the variable (The address of variable must be cast to type (char *) i.e.

pointer to character type.

The Second is the size of the variable

READ/WRITE FROM FILE
#include<iostream>

#include<fstream>

using namespace std;

int main()

{

ofstream file;

char name[20];

int age; float

salary;

//opening a binary file in output mode

file.open("test.bin", ios::binary);

//reading input from the user

cout<<"Enter name: ";

cin>>name;

cout<<"Enter age: ";

cin>>age;

cout<<"Enter salary: ";

cin>>salary;

//writing the information to the binary file using write()

file.write(name, sizeof(name));

file.write((char*)(&age), sizeof(age));

file.write((char*)(&salary), sizeof(salary));

//closing the file

file.close();

return 0;

}

READ/WRITE FROM FILE
In the above program, the statement

file.open("test.bin", ios::binary);

opens binary file “test.bin” for writing in the binary mode

And the statements,

file.write(name, sizeof(name));

file.write((char*)(&age), sizeof(age));

file.write((char*)(&salary), sizeof(salary));

writes the values of variables name, age and salary to the disk file “test.bin”. The first argument

write() function is the pointer to the character which must take the address of the character

variable. Hence, in this program, the address of the integer variable age and float variable salary

must be casted to type char*.

read(): The read() member function is used to binary the information in a binary file. The read() is used

as follows:

file_obj.read((char *)&variable , sizeof(variable));

READ/WRITE FROM FILE
Likewise write() function, read() function also takes two arguments:

The first is the address of the variable (The address of variable must be cast to type (char *) i.e.

pointer to character type.

The Second is the size of the variable

#include<iostream>

#include<fstream>

using namespace std;

int main()

{

fstream file;

char name[20] = "Jack";

int age = 35;

float marks[4] = {23,78,56,34};

char name1[20];

int age1;

float marks1[5];

//reading the information from the binary

file using read()

file.read(name1, sizeof(name1));

file.read((char*)(&age1), sizeof(age1));

//opening a binary file in output mode

file.open("test.bin", ios::binary|ios::out);

//writing information to binary file using write() file.read((char*)(marks1), sizeof(marks1));

file.write(name, sizeof(name));

 file.write((char*)(&age), sizeof(age));
 file.write((char*)(marks), sizeof(marks));

cout<<"Name:"<<name1<<endl;
 cout<<"Age:"<<age1<<endl;

 cout<<"Marks:"<<endl;

//closing the file

 file.close();

 }
 file.close();

 return 0;
}

for(int i=0;i<4;i++)

{
cout<<marks1[i]<<endl;

//opening a binary file in input mode
 file.open("test.bin", ios::binary|ios::in);

FILE ACCESS POINTERS AND THEIR MANIPULATORS

Each file has two associated pointers known as file pointers. One of them is called input

pointer(or get pointer) and the other is called the output pointer(or put pointer). The input

pointer is used for reading the contents of a given file location and the output pointer is used

for writing to a given file location. When input and output operation takes place, the

appropriate pointer is automatically set according to mode. For example, when we open a file

in reading mode get file pointer is automatically set to the start of file. And when we open in

append mode the put file pointer is automatically set at the end of file.

In C++ there are some manipulators by which we can control the movement of pointer.

The available manipulators in C++ are:

1. seekg(): Moves get pointer(input) to a specified location.

2. seekp(): Moves put pointer(output) to a specified location.

3. tellg(): Gives the current position of the get pointer.

4. tellp(): Gives the current position of the put pointer.

FILE ACCESS POINTERS AND THEIR MANIPULATORS

For Example,

ifstream infile;

infile.open(“test.txt”);

infile.seekg(10);

Moves the input file pointer to the byte number 10. Remember, the bytes in a file are numbered
beginning from zero. Therefore, the pointer will be pointing to the 11th byte in the file.

#include <iostream>
#include <conio.h>

#include <fstream>
using namespace std;

int main()
{

fout<< “is” ;
int p=fout.tellp() ;

cout<<p ;
fout.close() ;

getch() ;

}

ofstream fout(“Test.txt”) ;
fout<< “I am Ram” ;

fout.seekp(3) ;

Output:

5

FILE ACCESS POINTERS AND THEIR MANIPULATORS
seekp() and seekg() can also be used with two arguments as follows: seekg (offset, refposition) ; seekp

(offset, refposition) ; Here, the parameter offset represents the number of bytes the file pointer is to

be moved from the location specified by the parameter refpoisition. The refposition takes one of the

following three constants defined in the ios class:

ios::beg

ios:: cur

ios::end

start of the file

current position of the pointer

end of the file

NOTE: If we don’t provide the value of refposition, then the default value will be ios::beg

The offset can also be negative as follows:

file.seekg (-5, ios: : cur) ;

This statement means the file pointer moves five bytes back from the current position.

file.seekg(0, ios: : beg) ;

fout.seekg(0, ios: : cur) ;

fout.seekg(0, ios: : end) ;

go to start

stay at current position

go to end

Similarly, all above concepts are same for seekp() ;

FILE ACCESS POINTERS AND THEIR MANIPULATORS
FOR EXAMPLE:

fstream fout(“abc.txt”,ios::in|ios::out);

fout<<”hello world”;

int a = fout.tellp();

cout<<a<<endl;

fout.seekp(6);

fout<<”##”;

fout.seekp(-4,ios::cur);

char ch = fout.get();

cout<<ch;

Output:

11

o

TESTING ERRORS DURING FILE OPERATION
So far we have been opening and using the files for reading and writing on assumption that everything is

fine with the files. This may not always be true. There are many situations where errors may occur

during file operations. These errors must be detected and appropriate action must be taken to prevent

it. Some functions that can be used to detect errors are:

Returns non-zero value if the file is opened successfully else returns zero value.

ofstream outfile(“hello.txt”);

if(outfile.is_open()) {

//file is opened successfully

}

else

{

//file cannot be opened..

}

1. is_open():

TESTING ERRORS DURING FILE OPERATION
2. eof():

Returns non-zero if end of file is reached otherwise returns zero value.

ifstream fint(“abc.txt”);

while(! fin.eof())

{

char ch = fin.get();

cout<<ch;

}

else

{

//end of file is reached

}

The above program reads individual characters from the file and prints on the screen until the end

of file is reached.

TESTING ERRORS DURING FILE OPERATION
3. fail(): Returns true if input or output operation

has failed.

ofstream o_file(“hello.txt”) ;

 o_file<<”I am writing on the file”;

if(o_file.fail())

{

cerr<<”can’t write on the file”;

}

//cerr is used to print error message on console(monitor)

4. bad(): Returns true if an invalid operation is attempted or any unrecoverable error has

occurred.

5. good(): Returns true if no error has occurred. If file.good() returns true, then everything is

fine and we can perform input and output operations.

ifstream infile;

infile.open(“ABC”);

while(!infile.fail())

{

//process the file

}

if(infile.eof())

{

//terminate program normally

}

else if(infile.bad())

{

//report fatal error

}

else

{

infile.clear(); //clear error state so further operations can be attempted

}

Example

Multiple Choice
Questions on File
Handling in C++

1. Which operator is used to insert the data into
file?
a) >>
b) <<
c) <
d) >

2. Which function is used to position back from
the end of file object?
a) seekg
b) seekp
c) both seekg & seekp
d) Seekf

3. How many objects are used for input and
output to a string?
a) 1
b) 2
c) 3
d) 4

4. Which header file is used for reading and
writing to a file?
a) #include<iostream>
b) #include<fstream>
c) #include<file>
d) #include<fe>

5. What will be the output of the following C++
code?
 #include<iostream>
 #include <fstream>
 using namespace std;
 int main () {
 ofstream outfile ("test.txt");
 for (int n = 0; n < 100; n++) {
 outfile << n;
 outfile.flush();
 }
 cout << "Done";
 outfile.close();
 return 0;
 }
a) Done
b) Error
c) Runtime error
d) DoneDoneDone

6.By seeing which operator thus this C++ program
stops getting the input?
 #include <iostream>
 #include <fstream>
 using namespace std;
 int main () {
 char ch;
 streambuf * p;
 ofstream os ("test.txt");
 pbuf = os.rdbuf();
 do {
 ch = cin.get();
 p -> sputc(ch);
 } while (ch != '.');
 os.close();
 return 0;
 }
a) dot operator
b) insertion operator
c) $ symbol
d) @ symbol

7. What is meant by ofstream in c++?
a) Writes to a file
b) Reads from a file
c) Writes to a file & Reads from a file
d) delete a file

8. What must be specified when we construct an object of
class ostream?
a) stream
b) streambuf
c) memory
d) steamostream

9. How many types of output stream
classes are there in c++?

a) 1
b) 2
c) 3
d) 4

10. What is the output of this C++ program in the “test.txt”
file?
 #include <fstream>
 using namespace std;
 int main () {
 long pos;
 ofstream outfile;
 outfile.open ("test.txt");
 outfile.write ("This is an apple",16);
 pos = outfile.tellp();
 outfile.seekp (pos - 7);
 outfile.write (" sam", 4);
 outfile.close();
 return 0;
 }
a) This is an apple c) sample
b) Apple d) This is a sample

11. Which is used to get the input during runtime?

a) cout
b) cin
c) coi
d) cinout

12. Where does a cin stops it extraction of data?

a) By seeing a blank space
b) By seeing (
c) By seeing a blank space & (
d) By seeing <

13. Which operator is used for input stream?

a) >
b) >>
c) <
d) <<

14. What can be used to input a string with
blankspace?

a) inline
b) getline
c) putline
d) setline

15. What will be the output of the following C++
code?
 #include <iostream>
 using namespace std;
 int main() {
 char line[100];
 cin.getline(line, 100, 't');
 cout << line;
 return 0;
 }
a) 100
b) t
c) It will print what we enter till character t is
encountered in the input data
d) 200

16. Which of the following is used to create an
output stream?
a) ofstream
b) ifstream
c) iostream
d) fsstream

17. Which of the following is used to create a
stream that performs both input and output
operations?
a) ofstream
b) ifstream
c) iostream
d) fstream

18. By default, all the files in C++ are opened in
_________ mode.
a) Text
b) Binary
c) ISCII
d) VTC

19. What is the return type open() method?

a) int
b) char
c) bool
d) float

20. Which of the following is not used to seek file
pointer?
a) ios::set
b) ios::end
c) ios::cur
d) ios::beg

21. Which of the following is the default mode of
the opening using the ifstream class?

a) ios::in
b) ios::out
c) ios::app
d) ios::trunc

22. Which function is used in C++ to get the
current position of file pointer in a file?

a) tell_p()
b) get_pos()
c) get_p()
d) tell_pos()

23. Which function is used to reposition the file
pointer?

a) moveg()
b) seekg()
c) changep()
d) go_p()

24. Which of the following is used to move the file
pointer to start of a file?

a) ios::beg
b) ios::start
c) ios::cur
d) ios::first

25. Which function allows you to set minimum
width for the next input?

a) setfill
b) setw
c) setwidth
d) setheight

26. Which of the following is used to left-justify
the output field in C++?

a) ios::scientific
b) ios::right
c) ios::left
d) none

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

