6.4 Design and construction of sewers

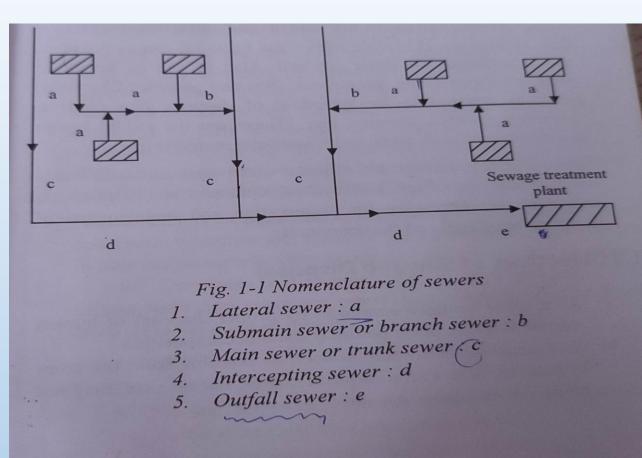
- Estimation of quantity of waste water
- Sewerage system and types
- Design criteria of sewers
- Shapes of sewers
- Design of sewers for separate and combined systems
- Construction of sewers and sewer appurtenances

Estimation of quantity of waste water

I. Sanitary sewage / dry weather flow (DWF): Flow available at non rainfall period, normal flow
II. Storm water or wet weather flow (WWF): Additional Flow that occur during rainfall.
Therefore , Total Sewage = DWF + WWF

DWF Calculation

DWF = Return factor x population x rate of W/S x Peak factor


• For Nepal, Return factor is taken as 80%

S.No.	Contributory Population of Sewer Stretch	Peak Factor
1	Up to 20,000	3.00
2	20,000 - 50,000	2.50
3	50.000 - 750,000	2.25
4	More than 750,000	2.00

Peak factors to be considered for design of sewer

pipes

Types of sewer	Peak factors
Domestic Sewer	6
Lateral Sewer	2-6
Branch Sewer	3
Submain Sewer	3
Main Sewer	2.5
Outfall sewer	2

Note: Peak flow is considered for design of sewer.

Storm Sewage Calculations

Two methods: Rational and empirical

Rational Method

 α

Intensity of rainfall:

. . . .

Q = CIA/360	 Intensity is calculated up 	ising the
Where, Q = WW	A catchment of area 200 ha has a runoff coefficient 0.5. A storm of duration larger	uency curve
C = run off coe	than the time of concentration of the catchment and of intensity 3.6 cm/h causes a peak discharge of	
I = intensity o		<u>al formula</u>
A = Area of ca	\bigcirc 5 m ³ /s	formula for
$C = \frac{C1 A1 + C2 A2 + C}{C1 A1 + C2 A2 + C}$	B 10 m ³ /s	
A1+A2+…		for 5 to 20
	O 100 m ³ /s	
	D 360 m ³ /s	for 20 to 100
	IIIIIULES	

Storm Sewage Calculations......

Note: Rational formula is limited to catchment area up to 400 hectares.

Empirical methods

• Burkli – Zeiglar formula

Q = (CIA/141.58)
$$\sqrt[*]{\frac{s}{A}}$$

• Fuller's formula

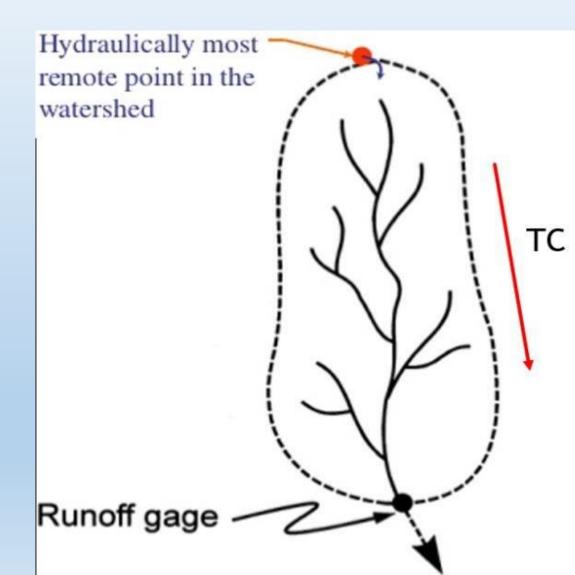
$$Q = \frac{C \cdot M^{0.8}}{13.23}$$

(Where, S- Slope of the area in meter per thousand meter,

- M- drainage area in sq. km.,
- A drainage area in hectare)

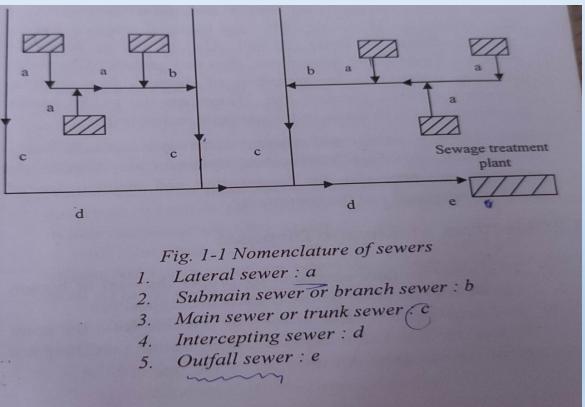
Time of concentration

Tc = Te + Tf


Where Te is time of entryTf = Time of travel or flow

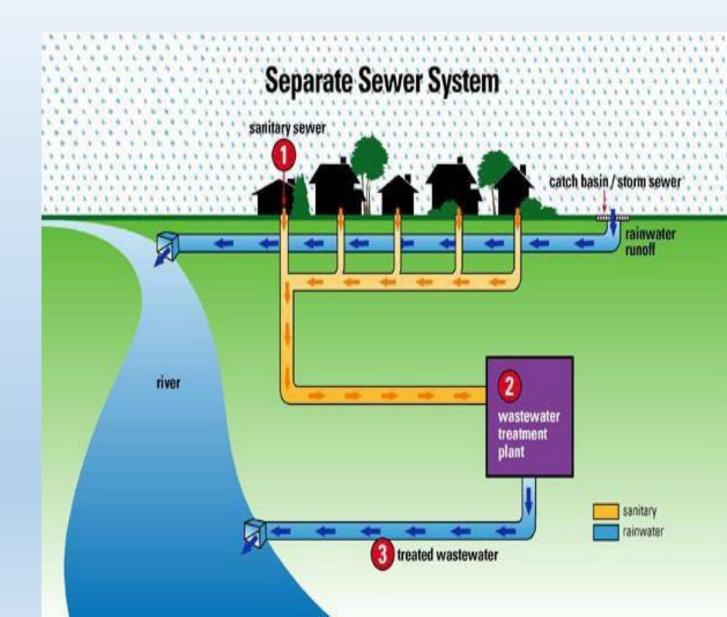
Q. Time of concentration is the

 time of maximum possible precipitation that may concentrate and fall over a given basin


- time taken by the rain water to flow to an existing defined drain in a basin.
- 3. time for which the rain water remains concentrated on the basin

4. maximum time taken by the rain water to reach the outlet of the basin.

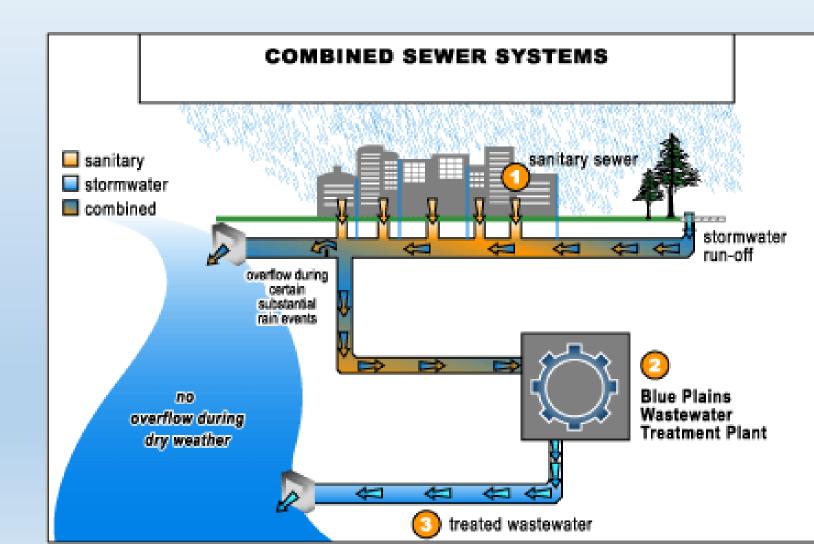
Sewerage System


- The entire system or network of sewers for collecting and delivering sewage to a disposal point is called sewerage system.
- Types:
- I. Separate system
- II. Partially separate
- III. Combined system

Sewerage System

1. Separate System

• Two different pipes for sewage and storm water.

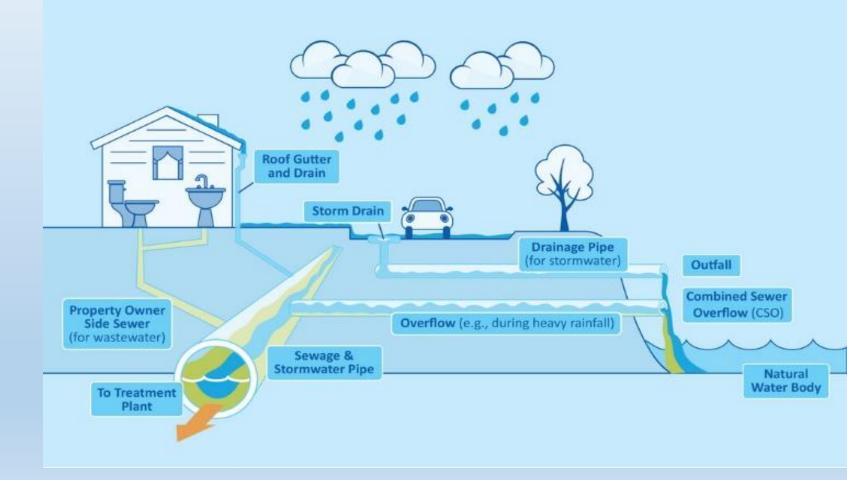


Separate system

Advantages	Disadvantages
I. Storm water is not	I. Maintenance cost is high
polluted	due to two set of pipes
II. Uniform characteristics of	and difficulty in laying of
sewage	pipe in in narrow streets
III.Economical in treatment	II. Chances of blockade and
due to less quantity of	difficult to clean
sewage	III.Uneasy in house plumbing
IV.No risk of overflow of	due to two sets of pipes
sanitary sewage etc	

Sewerage System

- 2. Combined System
- Single pipe or system is used.


Combined system

Advantages	Disadvantages
 Advantages I. Easy house plumbing II. No chances of choking due to large size of sewer and availability of storm sewage III. Laying of pipe is easy in congested area IV. Strength of sewage is reduced making it economical to treatment 	 Rain water gets polluted risk of overflow during heavy rainfall. Uneconomical if plumbing required due to ,large quantity of sewage Risk of entry of stream sewage to sanitary sewage during heavy rain
ueatment	IV. High initial cost due to more depth of laying

Sewerage System

 Partially Separate System

PARTIALLY SEPARATED SYSTEM

Partially Separate system

Advantages

- It combines the advantages of both the <u>combined system</u> and separate system.
- The entry of stormwater prevents the silting of the sewer.
- The sewers are of reasonable size.
- The problem of disposing stormwater from houses is simplified.

Disadvantages

- The velocity of flow is low in dry weather.
- There is a possibility of overflow.
- The entry of stormwater in the sewer may increase the load on the pumping and treatment unit.
- If the diversion of stormwater is not done at a proper time, then it may create unnecessary troubles.

Design criteria of Sewers.....

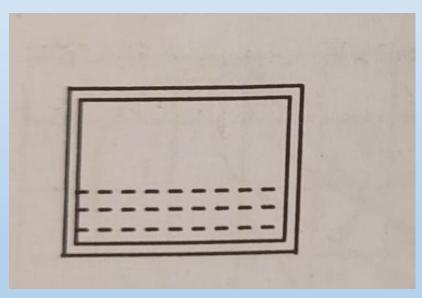
- Amount of liquid in sewage= 99.9 %
- S.P gravity = nearly one(1.001)
- 25 to 30 yrs. design period (30 yrs preferred)
- Min velocity of flow = self cleansing velocity given by Camp Shield formula
- $Vmin = \sqrt{8k(s-1)gd/f}$
- Where,
- d= size of particle,
- S= 2.65 for inorganic & 1.2 for organic sediments.
- f = coefficient of friction = 0.03
- K constant depends upon characteristics of particle = 0.04 for grit and 0.8 for sticky materials

Design criteria of Sewers.....

Self cleansing velocity:

Self cleansing velocity could not be maintained due to inability in determining k and friction factor f, so certain criteria like sewer size etc. are considered for finding limiting velocity.

Diameter	Velocity (m/s)
15cm-25	1.0 m/s
30cm -60 cm	0.7 m/s
>60cm	0.6 m/s


Note: Minimum self cleansing velocity = 0.6 m/s Maximum self cleansing velocity = 3 m/s

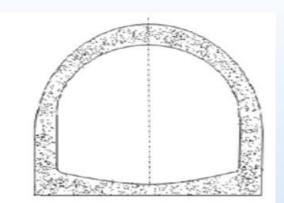
Design criteria of Sewers

- Sewer size should not less than 15cm and available sizes in market are 15, 20, 30,35, 40cm up to 1.6 m (according to DWSSM standards)
- Gradient is selected as per site condition
- Sewer are designed to flow 2/3 full at peak or maximum discharge.
- Sewer are designed to ensure self-cleansing velocity , limiting velocity , non-silting and non-scouring velocity

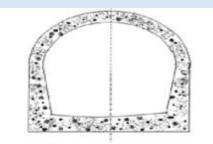
Shapes of Sewers

- Rectangular section
- I. Used in early days, but rarely used nowadays
- II. May be pre cast or in-situ
- III. Easy for construction but hydraulically not efficient

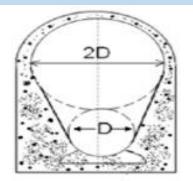
Shapes of Sewers


- Circular Section
- I. Most common section
- II. Maximum hydraulic depth and less chances of deposition of silt
- III. Easy manufacturing, transporting and laying,

Circular Sewer Section


Shapes of Sewers

- Semi elliptical
- I. Suitable for large discharge



(v) Semi-elliptical section;

- Horse shoe type
- I. Suitable for large perennial discharge
- Egged shaped
- I. Suitable for combined and separate system but not in use due to difficulty construction

(iii) Horse shoe sewer section

(i) Standard egg-shaped sewer

Hydraulic element of circular sewer

Circular sewer running full

- Area of flow section $A = \pi D^2/4$
- Wetted perimeter P= π D
- hydrulic mean depth = A/
- Velocity of flow $v = \frac{1}{n} x R^{\frac{2}{3}}$

Circular sewer running part

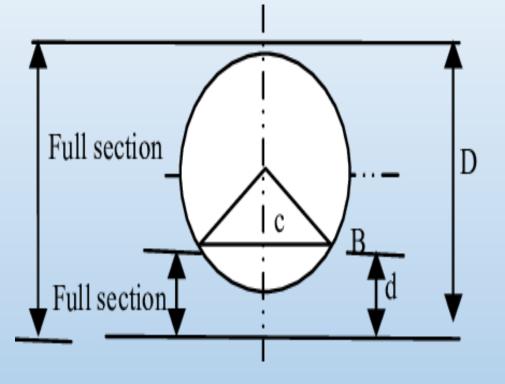
 $\frac{a}{D} = \frac{1}{2} (1 - \cos \frac{\theta}{2})$

Q. If a sewer is running 0.7

The hydraulic radius of a circular sewer of internal diameter 100 cm, running in fully occupied cross section is given by:

3. 50 cm

1. 100 cm


2. 25 cm

4. 75 cm

Hydraulic element of circular sewer...

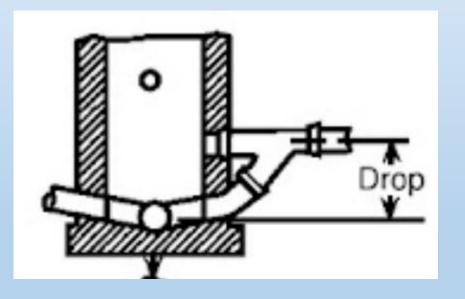
Circular sewer running partially full

 $I. \quad \frac{p}{P} = \left(\frac{\theta}{360}\right)$ $II. \quad \frac{a}{A} = \left(\frac{\theta}{360} - \frac{\sin\theta}{2\pi}\right)$ $III. \ \frac{r}{R} = \left(1 - \frac{360 \sin\theta}{2\pi\theta}\right)$ $IV. \ \frac{v}{v} = \left(1 - \frac{360 \sin\theta}{2\pi\theta}\right)^{2/3}$ $V. \quad \frac{q}{Q} = \frac{\theta}{360} \left(1 - \frac{360 \sin\theta}{2\pi\theta} \right)^{5/3}$

- I. Man hole/inspection chamber/access chamber/ confined space
- Masonry or RCC chamber
- Cleaning, testing, inspection, maintenance removal of obstruction from the sewer line

Location of Man Hole

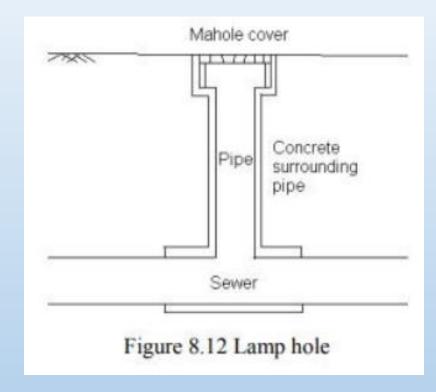
- At every change alignment(direction)
- At every change gradient(Slope)
- At every change size(dia)
- At every junction
- At regular interval (Dia. Upto 0.3 m =45 m) (As per indian standards)

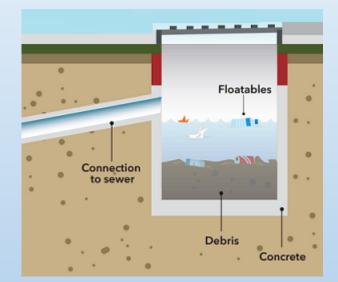

I. Man hole/inspection chamber/access chamber/ confined space

Size of Sewer	Recommended spacing of manholes on straight reaches of sewer lines as per IS 1742:1960
Diameter up to 0.3 m	45 m
Diameter up to 0.6 m	75 m
Diameter up to 0.9 m	90 m
Diameter up to 1.2 m	120 m
Diameter up to 1.5 m	250 m
Diameter greater than 1.5 m	300 m

Dimension of access chamber : 0.6 x 0.75 for rectangular 0.6 to 0.75 m for circular Dimension of working chamber: 0.9x 1.2 for rectangular 1.2 m for circular

Drop Man Hole


- Special type of manhole and provided when elevation difference is more than 0.6m
- Connect high level branch sewer to low level main sewer


Lamp Man Hole

- To join a hole in the sewer and the ground, for the purpose of lowering a lamp inside the sewer.
- Used for inspection , flushing and ventilation
- Constructed when construction of manhole is difficult
- Also known as fresh air inlet

Catch Basin (Catch Pit)

- Provided for the retention of heavy debris and allow settlement and trap for sand grit.
- Settled material should be periodically cleaned.

Street Inlet

- Device or opening in the in the street constructed to admit storm water in to the sewer line.
- it may be gutter, curb, or combined Street inlet

Construction of sewer

Steps

- 1. Setting out: The lay out and location of manholes are fixed by driving pegs or drawing offsets.
- 2. Alignment and gradient: The correct position of sewer line and levels of sewer are fixed by calculations. This is done with the help of boning rods, sight rails and levels.
- 3. Excavation of trench
- Timbering of trench: When excavation depth exceeds 1.5 to 2 m
- 5. Dewatering
- 6. Laying of sewer and construction of joints: Laid from downstream. Mostly socket and spigot joints are used.

Note: Boning rod is used to check sewer level.

Testing of sewer pipe 7. Testing

- **a.** Straightness test : Done to find out whether the sewer is laid in a straight line. Done using a light source and mirror .
- b. Obstruction test : Done to find out irregularities in joints. A marble of diameter 13 mm less than sewer is used.

c. Water test : Done to find the water tightness of sewer. The loss in water should not be more than 0.2 litre/ mm diameter for 30 minutes of testing under head of 2.5 m at the u/s end .

d. Air test : Done to find water tightness of sewer when water is scarce. The air filled at pressure of 100 mm should not drop below 75 mm.

8. Back filing

- To be done by parent material .
- Filled in 15-20 cm and ramming each layer

- 3. Removal of oil and grease from sewage is known as
- a. Screening
- b. Skimming
- c. Filtration
- d. All of the above options

4.When the sewage is dropped from higher level to lower sewage line , the type of manhole is called [NEC]

- a. Drop manhole
- b. Deep manhole
- c. Shallow manhole
- d. Lamp hole

5. The instrument used to transfer the elevation from ground surface to the bottom of the trench is called

- a. Normal rod
- b. Levelling rod
- c. Boning rod
- d. Surveying pegs
- 6. Sewerage system is usually designed for
- a. 7 years
- b. 5 years
- c. 100 years
- d. 25 years

- 8. The sewer pipes have to be designed and checked for
- a. only maximum flow
- b. both maximum and minimum flow
- c. only minimum flow
- d. None.

9. Location of Man Hole

a. At every change alignment(direction)b. At every change gradient(Slope)c.At every change size(diameter)d.At every junctione.All of the above

10. Sewer are normally subjected to

- a. Air test
- b. Water test
- c. Straightness test
- d. Obstruction test
- e. All of the above

11. The minimum size of sewer should not be less than

- a. 12cm
- b. 15cm
- c. 19mm
- d. 25cm

12. What is the facility provided to stop the entry of heavy debris present in the storm water into the sewers called?a) Curb inletb)Gutter inletc) Catch basind) Clean-outs

The lamp hole cannot be used for the flushing of sewers. a) True b) False

What are the manholes having a depth greater than 1.5 m called? a) Normal manholes b) Deep manholes c) Shallow manholes

d) Straight manholes

Explanation: The manholes having a depth of 0.7-0.9 m are called shallow manholes. The manholes having a depth of 1.5 m are called normal manholes. The manholes having depth greater than 1.5 m are called deep manholes

6.6 Concept of Environmental Assessment

- BES (Brief Environmental Study)
- IEE (Initial Environmental Examination)
- EIA (Environmental Impact Assessment)
- Government's act/rules/regulations/procedures for BES/IEE/EIA
- Types of disaster and its mitigation

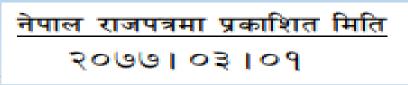
Types of environmental studies

• Depending upon the nature, complexity and size of the proposal, the environmental studies are classified under the following types:

A. Brief Environmental Study (BES):

- BES should be done for the project mentioned in the Schedule 1 of Environment Protection Rules 2077

B. Initial Environmental Examination (IEE):


-IEE should be done for the project mentioned in the Schedule 2 of Environment Protection Rules 2077

C. Environmental Impact Assessment (EIA):

-EIA should be done for the project mentioned in the Schedule 3 of Environment Protection Rules 2077

History of Environmental Study in Nepal

- EIA started from USA in 1970. (National environment policy act)
- Need for EIA recognized in 6th five year plan in Nepal
- Environmental Assessment Guidelines formed in 1993
- First EPA (Environment Protection Act) 1996
- First Environment Protection Rules 1997
- Current Environment Protection Act and Rules
 Date of Authentication 2076.06.24 (11th October, 2019)
- Environment Protection Rules (EPR) 2020 (2077)

