
Unit-7 Function Templates
and Exception Handling

Generic – Template function

• Are features of C++ programming language that allow functions and class to operate with generic
type.

• Two kinds of templates:
1. Function template: templates declared for function.
2. Class template: templates declared for classes.

- it allows a single template to deal with a generic data type.

1. Function Template:

Syntax:

Template < class T, ….>

Returntype func_name(args)

{

//body of template func;

}

Eg: function template

Function Template with multiple parameters:

Syntax:
template<class T1, class T2,.....>

return_type function_name (arguments of type
T1, T2....)

{

// body of function.

}

Overloading a Function Template:

2. Class Template:

• Class can also be declared to operate on different data types such
class are called class template.

• Syntax:

Template <class T1, class T2,…>

Class class_name

{

attributes;

methods;

};

Template <class T> // T=any data type
Class add
{
 public:
 T add (T,T);
};

Template and Inheritance

Exceptional Handling in C++
• Exception means an error.

• Is the process of converting system error messages into user-friendly
error messages is known as exception handling.

• It is an event, which occurs during the execution of the program, that
disrupts the normal flow of the program instruction.

• Error can be classified into two types:
• Compile time error: error caught during compile time. It includes library

references, syntax errors, or incorrect class input.
• Run time error: also called as exception. An exception caught during run time

creates serious issues.

• Eg: user divides a number of zero (x/0), this will compiles successfully
but an exception or runtime error will occur due to which our
application will crashed.

• Inorder to avoid this we will introduce exceptional handling techniques in our code.

• Exception handling Mechanism:
• find the problem (hit the exception).
• Inform about its occurrence (throw the exception)
• Receive error information (catch the exception)
• Take the proper action (handle the exception)

• C++ error handling keywords:

1. Try

2. Catch

3. Throw

Syntax:

 try {
 // Block of code to try
 throw exception; // Throw an exception when a problem arise

 }
 catch () {

// Block of code to handle errors
 }

Try, Catch and Throw
• Try block is intended to throw exception which is followed by catch

block, only one try block.

• Catch block is intended to catch the error and handle the exception.
We can have multiple catch blocks.

• Throw is a keyword that throws an exception encounter inside the try
block. It is used to Communicate information about errors.

Eg: here the program compiles successfully
but the program fails during runtime.
#include <iostream>

Using namespace std;

Int main(){

Int a =50, b=0, c;

C= a/b; // error occurs during run time (50/0) ;the program will crash.

Return 0;

}

Implementation of try catch and throw
statements:
Include <iostream>

Using namespace std;

Int main() {

Int a=50,b=0,c;

Try { // activates the exception handling.

If(b==0)

Throw “division by zero is not possible”;

C = a/b;

}

Catch(char *expression) // it catches the exception raised by the try block

{ cout <<expression;}

Return 0;

}

Output

0

Multiple catch statements:

Multiple Catch blocks

Catching all exceptions

1 d 2. a 3 d 4. b 5 c

1 Asynchronous exceptions 2 error handling 3 try, catch, throw

4 terminate(), abort() 5 throw

1 d 2 a 3 c 4 b 5 d

	Slide 1: Unit-7 Function Templates and Exception Handling
	Slide 2: Generic – Template function
	Slide 3: Eg: function template
	Slide 4: Function Template with multiple parameters:
	Slide 5: Overloading a Function Template:
	Slide 6: 2. Class Template:
	Slide 7
	Slide 8: Template and Inheritance
	Slide 9: Exceptional Handling in C++
	Slide 10
	Slide 11: Try, Catch and Throw
	Slide 12: Eg: here the program compiles successfully but the program fails during runtime.
	Slide 13: Implementation of try catch and throw statements:
	Slide 14: Multiple catch statements:
	Slide 15: Multiple Catch blocks
	Slide 16: Catching all exceptions
	Slide 17
	Slide 18
	Slide 19
	Slide 20

