Unit-8 File and Streams

Introduction:

* Three data types for writing program in files:
* fstream : supports for simultaneously input and output operations on files.
* ifstream: it provides input operation on files.
e ofstream: provides output operation on files.

Input Streams

REHL/ \ip ut data

Disk files Program

Write data Data output

Output stream

File Input and output stream

Stream classes:

10Ss_base
1 H’fdfhl‘)l.

108<> fill()

/\

1'-2[1‘& am<> ostream<>
29-‘-‘ () put()
10stream<> 0stri1 ngstream{}
lqtrlngqtream-::::- str()
str()
ifstream<> ofstream<>
open() open()
close() close()
stringstream<> fstream<>
str() open()

close()

Opening a File:

A file must be opened before you can read from it or write to it.
e ofstream or fstream object may be used to open a file for write.
* ifstream object is used to open a file for reading purposes only.
* Syntax: for open function

void open(const char *file_name, ios::open_mode mode);

Where “const char *file_name” specifies the name & location of file to
be opened.

“ios::open_mode mode” defines mode in which file should be opened.

File Mode Flags

Mode Flag Meaning

Appendmode. If the file already exists, its contents are

10380 preserved and all outputis written to the end of the file.
T If the file already exists, the program goes directly to the
jos::ate :

end of it.
: : Binary mode. Informationis written to or read from the
jos::binary : :

file in pure binary format.
jos::in Input mode. Informationis read from the file.

If the file does not already exist, the open function call

i0S::nocreate '
fails.

jos::noreplace If the file exists, the open function call fails.
jos::out Outputmode. Information is written to the file.

io0s::trunc If the file exists, its contents are deleted.

/

Eg:

ofstream outfile;
outfile.open(“file.data”, ios::out/ios::trunc);

fstream afile;
afile.open(“file.data”, ios::out/ios::in);

Closing the File:
- automatically closes all the opened files and releases all the allocated file.

- Syntax: void close();

Writing to a file:

* We use stream insertion operator(<<) the only difference is we use
ofstream or fstream object instead of cout object.

* Eg: ofstream<<“a”;
Reading from a file:

- we use stream extraction operator(>>) here we use ifstream or
fstream object instead of cin object.

Eg: fstream>>a

i/o file:

int main()

{
char strf10];
ofstream a_file ("example.txt"); //Creates an instance of ofstream, and opens example. txt
a_file<<"This text will now be inside of example.txt";// Outputs to example.txt through a_file
a_file.close(); // Close the file stream explicitly
ifstream b_file ("example.txt"); //Opens for reading the file
b_file>> str; //Reads one string from the file
cout<< str "\n";//Should output 'this'
cin.get(); /7 wait for a keypress
/7 b_file is closed implicitly here

cCo~NOYUT B~ WN P

PRRPPRPRP PR
OV WNREROW

Reading and Writing text file

int mainQ) {
fstream ob;

ob.open("test.txt", ios::out); // opening file in writing mode

ob "hello world\n"; // writing data to file

ob "this is my first file";

ob.close(); // closing the file
ob.open("test.txt", ios::in); // again opening the file but in reading mode

('ob.eof()) {

string str;
ob str; // reading word by word from file and storing in str

cout str \n"; // printing str

}

ob.close(); // closing the file after use

v S input

Binary file

std;

class Employee {
private :

int
char
char
int
int
public
void

void

empID;
empName[100] ;
designation[100];
ddj,mmj,yyj;
ddb,mmb,yyb;

readEmployee(){
cout<<"EMPLOYEE DETAILS"<<endl;
cout<<"ENTER EMPLOYEE ID : " ;
cin>>empID;
cin.ignore(l);
cout<<"ENTER NAME OF THE EMPLOYEE :

cin.getline(empName,);

cout<<"ENTER DESIGNATION : ";
cin.getline(designation,100);
cout<<"ENTER DATE OF JOIN:"
cout<<"DATE : "; cin>>ddj;
cout<<"MONTH: "; cin>>mmj;
cout<<"YEAR : "; cin>>yyj;
cout<<"ENTER DATE OF BIRTH:"
cout<<"DATE : "; cin>>ddb;
cout<<"MONTH: "; cin>>mmb;
cout<<"YEAR : "; cin>>yyb; }
displayEmployee(){
cout<<"EMPLOYEE ID: "
"EMPLOYEE NAME: "
"DESIGNATION: "
"DATE OF JOIN: "
"DATE OF BIRTH: "

endl;

endl;

empID<<endl
empName<<endl
designation<<endl
ddj<<"/"<<mmj<<"/"

ddb<<"/"<<mmb<<"/"

endl
endl;

yYJ
yyb

1}

int main(){
Employee emp;
emp.readEmployee();
fstream file;
file.open(FILE_NAME,ios::out!/ios::binary);
(' file){
cout<<"Error in creating file...\n";
3}
file.write((char*)&emp, (emp));
file.close();
cout<<"Date saved into file the file.\n";
file.open(FILE_NAME,ios::inlios::binary);
(! file){
cout<<"Error in opening file...\n";
33
H
(file.read((char*)&emp,s Cemp))){
cout<<endl<<endl;
cout "Data extracted from file..
',/-"/_7,/’5 nt the 1:7}\ Ct
emp. dlsplayEmployee() }
{

cout<<"Error in reading data from file...

file.close();

)

Random Access File

* Instant Access

* Want to locate records quickly?
 Airline reservation, Banking System, ATMs.

* Sequential files must search through each one

e Random access files are the solution

* |nstant Access
* Update/delete items without changing other data.

* C++ imposes no structure on files.

* The programmer must create random access files.
* Fixed length records.

1 fstream 2 ios::itrunc 3 current 4 main() 5 ios
1d,2b,3b,4c,5a

	Slide 1: Unit-8 File and Streams
	Slide 2: Introduction:
	Slide 3: Stream classes:
	Slide 4: Opening a File:
	Slide 5
	Slide 6: Eg:
	Slide 7: Writing to a file:
	Slide 8: i/o file:
	Slide 9: Reading and Writing text file
	Slide 10: Reading and Writing Binary file
	Slide 11
	Slide 12: Random Access File
	Slide 13
	Slide 14

