
2. Digital Logic and
Microprocessor

Er. Pralhad Chapagain

Syllabus

Number System
• Binary

• Octal

• Decimal

• Hexadecimal

• Conversions

POSITIVE AND NEGATIVE LOGIC

POSITIVE LOGIC:

• When we use binary 1 for high voltage and binary 0 for low voltage then it is called positive logic.

NEGATIVE LOGIC:

• When we use binary 0 for high voltage and binary 1 for low voltage then it is called Negative logic.

• Positive logic AND gate is equivalent to Negative logic OR gate and vice versa.

• Positive logic NAND gate is equivalent to Negative logic NOR gate and vice versa.

• Positive logic XOR gate is equivalent to Negative logic XNOR gate and vice versa.

Er. Pralhad Chapagain 5

A Y=A’

1 0

0 1

A B Y=A+B

1 1 1

1 0 0

0 1 0

0 0 0

A B Y=A.B

1 1 1

1 0 1

0 1 1

0 0 0

Truth Table Truth Table Truth Table

Negative Logic NOT gate Negative Logic OR gate Negative Logic AND gate

Logic Gates
• Basic Gates (NOT, AND, OR)

• Universal Gates (NAND, NOR)

• Exclusive Gates (XOR , XNOR)

Boolean Algebra
• Boolean Algebra is used to analyze and simplify the digital (logic)

circuits. It uses only the binary numbers i.e. 0 and 1. It is also called as
Binary Algebra or logical Algebra. Boolean algebra was invented by
George Boole in 1854.

• Boolean Laws

Boolean Algebra

Boolean Algebra

DE MORGANS THEOREM

FOR MCQ: https://www.sanfoundry.com/discrete-
mathematics-questions-answers-de-morgan-laws/

BOOLEAN ALGEBRA

Dual Theorem:

• Starting with a Boolean relation, we can derive another Boolean

relation, called its dual by the following steps:

• Changing each OR sign into AND sign

• Changing each AND sign into OR sign

• Complementing all 0’s and 1’s

Example:

Er. Pralhad Chapagain 11

S.N. Given Expression Dual of given expression

1 A + AB = A A. (A + B) = A

2 A + A’B = A + B A. (A’ + B) = A.B

3 A + A’ = 1 A.A’ = 0

4 (A + B)(A + C) = A + BC A.B + A.C = A. (B + C)

STANDARD FORM AND CANONICAL FORM

CANONICAL FORM:

• Max Term

• Min Term

Max Term:

• Each Max term is obtained from

an OR logic of n variables with

each variable being unprimed if

the corresponding bit is zero (0)

and primed if one (1).

Er. Pralhad Chapagain 12

A B C Max term designation

0 0 0 A+B+C M0

0 0 1 A+B+C’ M1

0 1 0 A+B’+C M2

0 1 1 A+B’+C’ M3

1 0 0 A’+B+C M4

1 0 1 A’+B+C’ M5

1 1 0 A’+B’+C M6

1 1 1 A’+B’+C’ M7

STANDARD FORM AND CANONICAL FORM

Min Term:

• Each Min term is obtained from an AND logic of n variables with

each variable being unprimed if the corresponding bit is one (1) and

primed if zero (0).

Er. Pralhad Chapagain 13

A B C Min term designation

0 0 0 A’B’C’ m0

0 0 1 A’B’C m1

0 1 0 A’BC’ m2

0 1 1 A’BC m3

1 0 0 AB’C’ m4

1 0 1 AB’C m5

1 1 0 ABC’ m6

1 1 1 ABC m7

STANDARD FORM AND CANONICAL FORM

STANDARD FORMS:

• In standard form the terms that form the function may contain one, two or any number of

literals/ variables. There are two types of standard forms.

• Sum of Product (SOP)

• Product of Sum (POS)

Sum of Product (SOP)

• SOP is a Boolean expression containing terms with AND logic of 1 or more literals.

• E.g. F=XYZ + X’YZ + X’Y’Z

Product of Sum(POS)

• POS is a Boolean expression containing terms with OR logic of 1 or more literals.

• E.g. F=(X + Y + Z) (X’ + Y + Z) (X’ +Y’ +Z)

Er. Pralhad Chapagain 14

Boolean Algebra - MCQ

KARNAUGH MAP (K-MAP) (SOP)

• K-MAP is regarded as a diagrammatic or pictorial form of a truth table.

• The map is a diagram made up of squares.

• Each square represents one min/ max term.

• The MAP represents a visual diagram of all possible ways of function, may ne

expressed in a standard form.

Basic K-MAP

 Fig: Two variable K-MAP

Er. Pralhad Chapagain 16

B

A

B’ B

0 1

A’ 0 A’B’ A’B

A 1 AB’ AB

KARNAUGH MAP (K-MAP) (SOP)

Three variable K-MAP

• There are 8 min terms for 3 binary variables.

• A MAP consists of 8 squares.

• The min terms are arranged not in a binary sequence but in sequence similar to gray code.

• The characteristics of the sequence is that only one bit is changes from one sequence to another.

 Fig: Three variable K-MAP

Er. Pralhad Chapagain 17

BC

A

B’C’ B’C BC BC’

00 01 11 10

A’ 0 m0 m1 m3 m2

A 1 m4 m5 m7 m6

KARNAUGH MAP (K-MAP) (SOP)

Four variable K-MAP

• There are 16 min terms for 4 binary variables.

• A MAP consists of 16 squares.

Simplification:

• One square box represents one min term

giving a term of four literals.

• Two adjacent square box represents a term of

three literals

• Four adjacent square box represents a term of

two literals.

Er. Pralhad Chapagain 18

CD

AB

C’D’ C’D CD CD’

00 01 11 10

A’B’ 00 m0 m1 m3 m2

A’B 01 m4 m5 m7 m6

AB 11 m12 m13 m15 m14

AB’ 10 m8 m9 m11 m10

Fig: Four variable K-MAP

• Eight square box represents one min term giving a

term of one literals.

▪ Sixteen adjacent square box represents a function 1

• Zero square box represents a function 0.

KARNAUGH MAP (K-MAP) (SOP)

DON’T CARE CONDITION:

• There are some condition of inputs for which output is not specified and such output does not

affect the whole system, which are known as Don’t Care condition.

• The Don’t care min terms are denoted by ‘X’ sign.

IMPLICANTS IN K-MAP

• Prime Implicants

• A group of square or rectangle made up of bunch of adjacent minterms which is allowed by definition of K-

Map are called prime implicants(PI) i.e. all possible groups formed in K-Map.

• Essential Prime Implicants

• These are those sub cubes (groups) which cover at least one minterm that can’t be covered by any other

prime implicant. Essential prime implicants(EPI) are those prime implicants which always appear in final

solution.

Er. Pralhad Chapagain 19

KARNAUGH MAP (K-MAP) (SOP)

E.G.

Er. Pralhad Chapagain 20

KARNAUGH MAP (K-MAP) (SOP)

K-MAP EXAMPLE:

• Simplify using K-MAP and design a logic circuit.

 F (A,B,C,D) = σ 1,3,7,11,13 and the don’t care condition D

(A,B,C,D) = σ 0,2,5

Er. Pralhad Chapagain 21

A’D

B’CD

BC’D

F = A’D + B’CD + BC’D Fig: Combinational Design

Boolean Algebra - MCQ

Boolean Algebra – MCQ –SET B

Boolean Algebra – MCQ –SET B

8

Boolean Algebra – MCQ –SET C

Boolean Algebra – MCQ –SET C

Boolean Algebra – MCQ –SET D

4

Boolean Algebra – MCQ –SET D

ADDER - HALF

• Binary adders nay be of two types:

• Half Adder

• Full Adder

Half Adder:

• Half adder is a combinational logic

circuit with two inputs and two

outputs.

• It is the basic building block for

addition of two single bit numbers

• This circuit has two outputs namely,

Sum and Carry.

• Truth table:

Er. Pralhad Chapagain 30

Inputs Outputs

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

ADDER - HALF

• Limitations:

• The addition of three bits is not possible

to perform by using an half adder circuit.

Er. Pralhad Chapagain 31

ADDER - FULL

Full Adder:

• To overcome the drawback of an half adder circuit, a

3-single bit adder circuit called full adder is

developed.

• Basically, a full adder is a three input and two output

combinational circuit.

• Application: A full adder acts as the basic building

block of the 4 bit/ 8 bit binary/ BCD adder Ics such

as 7483.

• Truth table:

Er. Pralhad Chapagain 32

Inputs Outputs

A B Cin Sum Carry (Co)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

ADDER - FULL

Er. Pralhad Chapagain 33

SUBTRACTOR - HALF

• Binary Subtractor nay be of two

types:

• Half Subtractor

• Full Subtractor

Half Subtractor:

• Half subtractor may be defined as a

combinational circuit with two

inputs and two outputs (i.e.

difference and borrow)

• In subtraction (A-B), A is called

minuend bit and B is called as

Subtrahend bit.

• Truth table:

Er. Pralhad Chapagain 34

Inputs Outputs

A B Difference (A-B) Borrow (Bo)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

SUBTRACTOR - HALF

Er. Pralhad Chapagain 35

SUBTRACTOR - FULL

Full Subtractor:

• A Full Subtractor is a combinational

circuit with three inputs A, B, Bin

and two outputs D (Difference) and

Borrow (Bo.)

• Here A is the minuend, B is the

subtrahend, Bin is the borrow

produced by the previous stage, D is

the difference output and Bo is the

borrow output.

• Truth table:

Er. Pralhad Chapagain 36

Inputs Outputs

A B Bin Difference (A-B-Bin) Borrow (Bo)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

SUBTRACTOR - FULL

Er. Pralhad Chapagain 37

SUBTRACTOR - FULL

Er. Pralhad Chapagain 38

BINARY PARALLEL ADDER

• A full adder is capable of adding only two single digit binary numbers

along with a carry input.

• But, in practice, we need to add binary numbers which are much longer

than just one bit.

• To add two n- bit binary numbers, we need to use the n-bit parallel adder.

• It makes use of a number of full adders in cascade.

• The carry output of the previous full adder is connected to the carry input

of the next full adder.

A 4-bit Binary Parallel Adder:

Er. Pralhad Chapagain 39

BINARY PARALLEL ADDER

• A binary parallel adder is a digital function that produces the

arithmetic sum of two binary numbers in parallel.

• It consists of full-adder connected in cascade, with the output carry

from one full adder connected to the input carry of the next full-

adder.

Er. Pralhad Chapagain 40

Fig: 4-bit Binary Parallel adder

4-BIT BINARY PARALLEL SUBTRACTOR

• The 4-bit binary subtractor produces the subtraction of two 4-bit numbers.

• Let the 4 bit binary numbers, A=A3A2A1A0 and B=B3B2B1B0.

• Internally, the operation of 4-bit Binary subtractor is similar to that of 4-bit

Binary adder.

• If the normal bits of binary number A, complemented bits of binary

number B and initial carry borrow, Cin as one are applied to 4-bit Binary

adder, then it becomes 4-bit Binary subtractor.

• The block diagram of 4-bit binary subtractor is shown in the following

figure.

Er. Pralhad Chapagain 41

Note : A-B = A+ B’ +1

4-BIT BINARY PARALLEL SUBTRACTOR

• This 4-bit binary subtractor produces an output, which is having at

most 5 bits.

• If Binary number A is greater than Binary number B, then MSB of

the output is zero and the remaining bits hold the magnitude of A-B.

• If Binary number A is less than Binary number B, then MSB of the

output is one. So, take the 2’s complement of output in order to get

the magnitude of A-B

Er. Pralhad Chapagain 42

4-BIT BINARY PARALLEL ADDER/SUBTRACTOR

• The circuit, which can be used to perform either addition or subtraction of two binary numbers at

any time is known as Binary Adder / subtractor.

• Both, Binary adder and Binary subtractor contain a set of Full adders, which are cascaded.

• The input bits of binary number A are directly applied in both Binary adder and Binary

subtractor.

• The input bits of binary number B are directly applied to Full adders in Binary adder, whereas the

complemented bits of binary number B are applied to Full adders in Binary subtractor.

• The initial carry, C0 = 0 is applied in 4-bit Binary adder, whereas the initial carry borrow, C0 = 1

is applied in 4-bit Binary subtractor.

• We know that a 2-input Ex-OR gate produces an output, which is same as that of first input when

other input is zero. Similarly, it produces an output, which is complement of first input when

other input is one.

Er. Pralhad Chapagain 43

4-BIT BINARY PARALLEL ADDER/SUBTRACTOR

• If initial carry, 𝐶0 is zero, then each full adder gets the normal bits of binary numbers A & B. So, the 4-bit

binary adder / subtractor produces an output, which is the addition of two binary numbers A & B.

• If initial borrow, 𝐶0 is one, then each full adder gets the normal bits of binary number A & complemented

bits of binary number B. So, the 4-bit binary adder / subtractor produces an output, which is the subtraction

of two binary numbers A & B.

Er. Pralhad Chapagain 44

= 0 for adder

=1 for subtractor

DECODERS

 Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output lines.

 One of these outputs will be active High based on the combination of inputs present, when the decoder is

enabled.

 That means decoder detects a particular code. The outputs of the decoder are nothing but the min terms of

‘n’ input variables lines, when it is enabled.

2 to 4 Decoder

 Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block diagram of 2 to

4 decoder is shown in the following figure.

Er. Pralhad Chapagain

45

DECODERS

 One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1’. The Truth table

of 2 to 4 decoder is shown below.

Er. Pralhad Chapagain

46

DECODERS

3 X 8 DECODER:

Er. Pralhad Chapagain

47

Logic Diagram

Block Diagram

Truth Table

Function

IMPLEMENTATION OF HIGHER ORDER DECODERS

Er. Pralhad Chapagain

48

3 to 8 decoder using 2 to 4 decoder 4 to 16 decoder using 3 to 8 decoder

IMPLEMENTATION OF HIGHER ORDER DECODERS

Er. Pralhad Chapagain

49
4 to 16 decoder using 2 to 4 decoder

ENCODERS

 An Encoder is a combinational circuit that performs the reverse operation of Decoder.

 It has maximum of 2n input lines and ‘n’ output lines.

 It will produce a binary code equivalent to the input, which is active High.

 Therefore, the encoder encodes 2n input lines with ‘n’ bits. It is optional to represent the enable signal in

encoders.

4 to 2 Encoder

 Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block diagram of 4 to 2

Encoder is shown in the following figure.

Er. Pralhad Chapagain

50

ENCODERS

 At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the output.

The Truth table of 4 to 2 encoder is shown below.

Er. Pralhad Chapagain

51

Logic Diagram

ENCODERS – OCTAL TO BINARY ENCODER

 Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0.

 Octal to binary encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary Encoder is

shown in the following figure

Er. Pralhad Chapagain

52

Truth Table and

Function

ENCODERS – OCTAL TO BINARY ENCODER

Drawbacks of Encoder

 There is an ambiguity, when all outputs of encoder are equal to zero

 If more than one input is active High, then the encoder produces an output, which may not be the correct

code.

Er. Pralhad Chapagain

53

Logic Diagram

ENCODERS – PRIORITY ENCODER

 We considered one more output, V in order to know, whether the code available at outputs is valid or not.

 If at least one input of the encoder is ‘1’, then the code available at outputs is a valid one. In this case, the output,

V will be equal to 1.

 If all the inputs of encoder are ‘0’, then the code available at outputs is not a valid one. In this case, the output, V

will be equal to 0.

Er. Pralhad Chapagain

54

Truth Table

ENCODERS – PRIORITY ENCODER



Er. Pralhad Chapagain

55
K-MAP and Function Logic Diagram

DEMULTIPLEXERS (DEMUX)

 A demultiplexer (or demux) is a device that takes a single input line and routes it to one of several digital

output lines.

 A demultiplexer of 2n outputs has n select lines, which are used to select which output line to send the

input.

 A demultiplexer is also called a data distributor.

1x4 De-Multiplexer

 1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2, Y1 &Y0. The

block diagram of 1x4 De-Multiplexer is shown in the following figure.

Er. Pralhad Chapagain

56

DEMULTIPLEXERS (DEMUX)

Er. Pralhad Chapagain

57

Logic Diagram
Truth Table

IMPLEMENTATION OF HIGHER ORDER DE-MULTIPLEXERS

Er. Pralhad Chapagain

58

Truth Table
1 X 8 DE-MUX using 1 X 4 and 1 X 2 DE-MUX

Logic Diagram

IMPLEMENTATION OF HIGHER ORDER DE-MULTIPLEXERS

Er. Pralhad Chapagain

59 1 X 16 DE-MUX using 1 x 8 and 1 x 2 DE-MUX

Logic Diagram

1 X 16 DE-MUX using 1 x 4

X = INPUT, A3,A2,A1,A0 are selection

line

MULTIPLEXERS (MUX)

 Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’ selection lines and single

output line.

 One of these data inputs will be connected to the output based on the values of selection lines.

 Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones.

 So, each combination will select only one data input. Multiplexer is also called as Mux.

4x1 Multiplexer

 4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y. The block

diagram of 4x1 Multiplexer is shown in the following figure.

Er. Pralhad Chapagain

60

MULTIPLEXERS (MUX)

Er. Pralhad Chapagain

61

Logic Diagram

MULTIPLEXERS (MUX)

 Application

 Communication system

 Telephone network

 Computer memory

 Transmission from the computer system of a satellite

 Data acquisition system

Er. Pralhad Chapagain

62

IMPLEMENTATION OF HIGHER ORDER MULTIPLEXERS

Er. Pralhad Chapagain

63 8 X 1 MUX using 4 x 1 and 2 x 1 MUX
Truth Table

IMPLEMENTATION OF HIGHER ORDER MULTIPLEXERS

Er. Pralhad Chapagain

64 16 X 1 MUX using 8 x 1 and 2 x 1 MUX
16 X 1 MUX using 4 x 1

BINARY ADDITION

Er. Pralhad Chapagain

65

BINARY SUBTRACTION

Er. Pralhad Chapagain

66

SIGNED AND UNSIGNED BINARY NUMBERS

Er. Pralhad Chapagain

67

SIGNED AND UNSIGNED BINARY NUMBERS

Er. Pralhad Chapagain

68

Combinational and Arithmetic Circuits – SET A

Combinational and Arithmetic Circuits – SET A

Combinational and Arithmetic Circuits – SET B

Combinational and Arithmetic Circuits – SET B

Combinational and Arithmetic Circuits – SET C

Combinational and Arithmetic Circuits – SET D

Combinational and Arithmetic Circuits – SET D

SEQUENTIAL LOGIC

 Sequential circuit produces an output based on current input and previous input variables.

 That means sequential circuits include memory elements which are capable of storing binary information.

 That binary information defines the state of the sequential circuit at that time.

 A latch is capable of storing one bit of information.

 As shown in figure there are two types of input to the

 combinational logic :

 External inputs which not controlled by the circuit.

 Internal inputs which are a function of a previous output states.

Er. Pralhad Chapagain

77

SEQUENTIAL LOGIC - TYPES

 Asynchronous sequential circuit

 These circuit do not use a clock signal but uses the pulses of the inputs.

 These circuits are faster than synchronous sequential circuits because they change their state immediately when

there is a change in the input signal.

 We use asynchronous sequential circuits when speed of operation is important and independent of internal clock

pulse.

 But these circuits are more difficult to design and their output is uncertain.

Er. Pralhad Chapagain

78

SEQUENTIAL LOGIC - TYPES

 Synchronous sequential circuit

 These circuit uses clock signal and level inputs (or pulsed) with restrictions on pulse width and circuit propagation.

 The output pulse is the same duration as the clock pulse for the clocked sequential circuits.

 Since they wait for the next clock pulse to arrive to perform the next operation, so these circuits are bit slower

compared to asynchronous.

 Level output changes state at the start of an input pulse and remains in that until the next input or clock pulse.

 We use synchronous sequential circuit in synchronous counters,

 flip flops, and in the design of

 state management machines.

Er. Pralhad Chapagain

79

CLOCK SIGNAL AND TRIGGERING

Clock signal:

 Clock signal is a periodic signal and its ON time and OFF time need not be the same.

 We can represent the clock signal as a square wave, when both its ON time and OFF time are same.

 The pattern repeats with some time period. In this case, the time period will be equal to either twice of ON

time or twice of OFF time.

 We can represent the clock signal as train of pulses, when ON time and OFF time are not same

 In this case, the time period will be equal to sum of ON time and OFF time.

Er. Pralhad Chapagain

80

CLOCK SIGNAL AND TRIGGERING

Types of Triggering

 Level triggering

 Edge triggering

Level triggering

 There are two levels, namely logic High and logic Low in clock signal.

 Following are the two types of level triggering.

 Positive level triggering

 Negative level triggering

 If the sequential circuit is operated with the clock signal when it is in Logic High, then that type of

triggering is known as Positive level triggering. It is highlighted in above figure.

Er. Pralhad Chapagain

81

CLOCK SIGNAL AND TRIGGERING

 If the sequential circuit is operated with the clock signal when it is in Logic Low, then that type of

triggering is known as Negative level triggering. It is highlighted in the following figure.

Edge triggering

 There are two types of transitions that occur in clock signal. That means, the clock signal transitions either

from Logic Low to Logic High or Logic High to Logic Low..

 Positive edge triggering

 Negative edge triggering

 If the sequential circuit is operated with the clock signal that is transitioning from Logic Low to Logic

High, then that type of triggering is known as Positive edge triggering. It is also called as rising edge

triggering. It is shown in the following figure.

Er. Pralhad Chapagain

82

CLOCK SIGNAL AND TRIGGERING

 If the sequential circuit is operated with the clock signal that is transitioning from Logic High to Logic

Low, then that type of triggering is known as Negative edge triggering. It is also called as falling edge

triggering. It is shown in the following figure.

Er. Pralhad Chapagain

83

LATCHES

 There are two types of memory elements based on the type of triggering that is suitable to operate it.

 Latches

 Flip-flops

 Latches operate with enable signal, which is level sensitive. Whereas, flip-flops are edge sensitive.

SR Latch

 SR Latch is also called as Set Reset Latch.

 This latch affects the outputs as long as the enable, E is maintained at ‘1’. The circuit diagram of SR Latch

is shown in the following figure

Er. Pralhad Chapagain

84

FLIP-FLOP

 Flip-flop is a basic digital memory circuit, which stores one bit of information.

 Flip flops are the fundamental blocks of most sequential circuits.

 Flip-flops are used as memory elements in clocked sequential circuit.

 Flip-flop circuit has two outputs, one for the normal value and one for the complement value of the bit

stored in it.

 Binary information can be enter a flip-flop in a variety of ways, a fact, which gives rise to different types

of flip-flops.

 SR Flip-Flop

 D Flip-Flop

 JK Flip-Flop

 T Flip-Flop

Er. Pralhad Chapagain

85

FLIP-FLOP – SR FLIP-FLOP

 SR (Set-Reset) flip-flop operates with only positive clock transitions or negative clock transitions.

Whereas, SR latch operates with enable signal. The circuit diagram of SR flip-flop is shown in the

following figure.

Er. Pralhad Chapagain

86

Clock S R Q(t) Q(t+1) Comment

↓ 0 0 0 0 Hold

↓ 0 0 1 1 Hold

↓ 0 1 0 0 Reset

↓ 0 1 1 0 Reset

↓ 1 0 0 1 Set

↓ 1 0 1 1 Set

↓ 1 1 0 X Indeterminant

↓ 1 1 1 X Indeterminant

Logic diagram

Characteristic Table

Graphical Symbol

FLIP-FLOP – SR FLIP-FLOP

Er. Pralhad Chapagain

87

Timing diagram

Excitation Table

K-MAP and Boolean function

FLIP-FLOP – D FLIP-FLOP

 D (Data) flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, D

latch operates with enable signal.

 That means, the output of D flip-flop is insensitive to the changes in the input, D except for active

transition of the clock signal. The circuit diagram of D flip-flop is shown in the following figure.

Er. Pralhad Chapagain

88

Clock D Q(t) Q(t+1) Comment

↓ 0 0 0 Reset

↓ 0 1 0 Reset

↓ 1 0 1 Set

↓ 1 1 1 Set

Graphical Symbol

Logic diagram

Characteristic Table

FLIP-FLOP – D FLIP-FLOP

Er. Pralhad Chapagain

89

Timing diagram

Excitation Table

Boolean function

FLIP-FLOP – JK FLIP-FLOP

 JK flip-flop is the modified version of SR flip-flop.

 It operates with only positive clock transitions or negative clock transitions. The circuit diagram of JK flip-

flop is shown in the following figure.

 The indeterminant state of RS flip-flop is defined in JK flip-flop.

Er. Pralhad Chapagain

90

Graphical Symbol

Logic diagram

Characteristic Table

Clock J K Q(t) Q(t+1) Comment

↓ 0 0 0 0 Hold

↓ 0 0 1 1 Hold

↓ 0 1 0 0 Reset

↓ 0 1 1 0 Reset

↓ 1 0 0 1 Set

↓ 1 0 1 1 Set

↓ 1 1 0 1 Complement

↓ 1 1 1 0 Complement

FLIP-FLOP – JK FLIP-FLOP

Er. Pralhad Chapagain

91

Timing diagram

Excitation Table

FLIP-FLOP – T FLIP-FLOP

 The T flipflop is a single input version of the JK flipflop.

 The T flipflop is obtained from JK type if both inputs are tied together.

 The designation T comes from the ability of the flipflop to “Toggle”, or change state. Regardless of the

present state of the flipflop, it assumes the complement state when the clock pulse occurs while input T is

in logic 1.

Er. Pralhad Chapagain

92

Graphical Symbol

Logic diagram

Characteristic Table

Clock T Q(t) Q(t+1) Comment

↓ 0 0 0 Hold

↓ 0 1 1 Hold

↓ 1 0 1 Complement

↓ 1 1 0 Complement

FLIP-FLOP – T FLIP-FLOP

Er. Pralhad Chapagain

93

Timing diagram

Excitation Table

MASTER – SLAVE JK FLIPFLOP

 Race Around Condition In JK Flip-flop

 For J-K flip-flop, if J=K=1, and if clk=1 for a long period of time, then Q output will toggle as long as CLK is

high, which makes the output of the flip-flop unstable or uncertain.

 This problem is called race around condition in J-K flip-flop.

 This problem (Race Around Condition) can be avoided by ensuring that the clock input is at logic “1” only for a

very short time.

 To eliminate race around condition:

 Use edge- triggered flip-flop

 Use Master Slave JK flip flop.

Er. Pralhad Chapagain

94

MASTER – SLAVE JK FLIPFLOP

 Master Slave JK flip flop

 The Master-Slave Flip-Flop is basically a combination of two JK flip-flops connected together in a series

configuration.

 Out of these, one acts as the “master” and the other as a “slave”.

 The output from the master flip flop is connected to the two inputs of the slave flip flop whose output is

fed back to inputs of the master flip flop.

 In addition to these two flip-flops, the circuit also includes an inverter.

 The inverter is connected to clock pulse in such a way that the inverted clock pulse is given to the slave

flip-flop.

 In other words if CP=0 for a master flip-flop, then CP=1 for a slave flip-flop and if CP=1 for master flip

flop then it becomes 0 for slave flip flop.

Er. Pralhad Chapagain

95

MASTER – SLAVE JK FLIPFLOP



Er. Pralhad Chapagain

96

Timing diagram

Logic diagramBlock diagram

COUNTERS

 Counter is a sequential circuit.

 A digital circuit which is used for a counting pulses is known counter.

 Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied.

 Counters are of two types.

 Asynchronous or ripple counters.

 In asynchronous counter we don’t use universal clock, only first flip flop is driven by main clock and the clock

input of rest of the following flip flop is driven by output of previous flip flops

 Synchronous counters.

 Unlike the asynchronous counter, synchronous counter has one global clock which drives each flip flop so output

changes in parallel.

 The one advantage of synchronous counter over asynchronous counter is, it can operate on higher frequency than

asynchronous counter as it does not have cumulative delay because of same clock is given to each flip flop

Er. Pralhad Chapagain

97

SYNCHRONOUS VS ASYNCHRONOUS COUNTERS

Er. Pralhad Chapagain

98

ASYNCHRONOUS COUNTERS

BINARY UP COUNTER

 An ‘N’ bit Asynchronous binary up counter consists of ‘N’ T flip-flops. It counts from 0 to 2𝑁 − 1.

 EXAMPLE: 3-BIT BINARY UP COUNTER

Er. Pralhad Chapagain

99

State diagram Count Sequence

REGISTERS

 Flip-flop is a 1 bit memory cell which can be used for storing the digital data.

 To increase the storage capacity in terms of number of bits, we have to use a group of flip-flop.

 Such a group of flip-flop is known as a Register.

 The n-bit register will consist of n number of flip-flop and it is capable of storing an n-bit word.

 The binary data in a register can be moved within the register from one flip-flop to another.

 The registers that allow such data transfers are called as shift registers. There are four mode of operations

of a shift register.

 Serial Input Serial Output

 Serial Input Parallel Output

 Parallel Input Serial Output

 Parallel Input Parallel Output

Er. Pralhad Chapagain

100

REGISTERS

SERIAL INPUT SERIAL OUTPUT

 Let all the flip-flop be initially in the reset condition i.e. Q3 = Q2 = Q1 = Q0 = 0. If an entry of a four bit binary

number 1 1 1 1 is made into the register, this number should be applied to Din bit with the LSB bit applied first.

The D input of FF-3 i.e. D3 is connected to serial data input Din. Output of FF-3 i.e. Q3 is connected to the input

of the next flip-flop i.e. D2 and so on.

 Also known as, shift right register.

Er. Pralhad Chapagain

101

REGISTERS

Er. Pralhad Chapagain

102

REGISTERS

SERIAL INPUT PARALLEL OUTPUT

 In such types of operations, the data is entered serially and taken out in parallel fashion.

 Data is loaded bit by bit. The outputs are disabled as long as the data is loading.

 As soon as the data loading gets completed, all the flip-flops contain their required data, the outputs are enabled so

that all the loaded data is made available over all the output lines at the same time.

 4 clock cycles are required to load a four bit word. Hence the speed of operation of SIPO mode is same as that of

SISO mode.

Er. Pralhad Chapagain

103

REGISTERS

PARALLEL INPUT SERIAL OUTPUT (PISO)

 Data bits are entered in parallel fashion.

 The circuit shown below is a four bit parallel input serial output register.

 Output of previous Flip Flop is connected to the input of the next one via a combinational circuit.

 The binary input word B0, B1, B2, B3 is applied though the same combinational circuit.

 There are two modes in which this circuit can work namely - shift mode or load mode.

Er. Pralhad Chapagain

104

REGISTERS

 Load mode

 When the shift/load bar line is low (0), the AND gate 2, 4 and 6 become active they will pass B1, B2, B3 bits to the

corresponding flip-flops. On the low going edge of clock, the binary input B0, B1, B2, B3 will get loaded into the

corresponding flip-flops. Thus parallel loading takes place.

 Shift mode

 When the shift/load bar line is high (1), the AND gate 2, 4 and 6 become inactive. Hence the parallel loading of the

data becomes impossible. But the AND gate 1,3 and 5 become active. Therefore the shifting of data from left to

right bit by bit on application of clock pulses. Thus the parallel in serial out operation takes place.

Er. Pralhad Chapagain

105

REGISTERS

PARALLEL INPUT PARALLEL OUTPUT (PIPO)

 In this mode, the 4 bit binary input B0, B1, B2, B3 is applied to the data inputs D0, D1, D2, D3

respectively of the four flip-flops.

 As soon as a negative clock edge is applied, the input binary bits will be loaded into the flip-flops

simultaneously. The loaded bits will appear simultaneously to the output side. Only clock pulse is essential

to load all the bits.

Er. Pralhad Chapagain

106

SHIFT REGISTERS

Bidirectional Shift Register

 If a binary number is shifted left by one position then it is equivalent to multiplying the original number by

2. Similarly if a binary number is shifted right by one position then it is equivalent to dividing the original

number by 2.

 Hence if we want to use the shift register to multiply and divide the given binary number, then we should

be able to move the data in either left or right direction.

 Such a register is called bi-directional register. A four bit bi-directional shift register is shown in fig.

 There are two serial inputs namely the serial right shift data input DR, and the serial left shift data input

DL along with a mode select input (M).

Er. Pralhad Chapagain

107

SHIFT REGISTERS

Er. Pralhad Chapagain

108

SHIFT REGISTERS

 With M = 1 − Shift right operation

 If M = 1, then the AND gates 1, 3, 5 and 7 are enabled whereas the remaining AND gates 2, 4, 6 and 8 will be

disabled.

 The data at DR is shifted to right bit by bit from FF-3 to FF-0 on the application of clock pulses. Thus with M = 1

we get the serial right shift operation

 With M = 0 − Shift left operation

 When the mode control M is connected to 0 then the AND gates 2, 4, 6 and 8 are enabled while 1, 3, 5 and 7 are

disabled.

 The data at DL is shifted left bit by bit from FF-0 to FF-3 on the application of clock pulses. Thus with M = 0 we

get the serial right shift operation.

Er. Pralhad Chapagain

109

RING COUNTERS

 Ring counter is a typical application of Shift resister.

 Ring counter is almost same as the shift counter.

 The only change is that the output of the last flip-flop is connected to the input of the first flip-flop in case

of ring counter but in case of shift resister it is taken as output. Except this all the other things are same.

 No. of states in Ring counter = No. of flip-flop used

 In this diagram, we can see that the clock pulse (CLK) is applied to all the flip-flop simultaneously.

Therefore, it is a Synchronous Counter.

Er. Pralhad Chapagain

110

RING COUNTERS

 Also, here we use Overriding input (ORI) to each flip-flop. Preset (PR) and Clear (CLR) are used as ORI.

 When PR is 0, then the output is 1. And when CLR is 0, then the output is 0. Both PR and CLR are active

low signal that is always works in value 0.

Er. Pralhad Chapagain

111

RING COUNTERS

 This Preseted 1 is generated by making ORI low and that time Clock (CLK) becomes don’t care.

 After that ORI made to high and apply low clock pulse signal as the Clock (CLK) is negative edge

triggered.

 After that, at each clock pulse the preseted 1 is shifted to the next flip-flop and thus form Ring.

 From the above table, we can say that there are 4 states in 4-bit Ring Counter.

 4 states are:

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

Er. Pralhad Chapagain

112

JOHNSON COUNTERS

 In the ring counter we given the output of the last flip flop into the input of the first flip but in the Johnson

counter the last flip flop complemented output is given to the input of the first flip flop.

 In Johnson counter the number of states is equal to twice the number of flip flops.

 So if we use 4 flip flops we will have 8 states so the number of the states are double.

 We applied clock simultaneously to all flip flops.

 The clear input is applied to all the flip flops.

Er. Pralhad Chapagain

113

JOHNSON COUNTERS

 The output of the first flip flop which is Q0 is given at the input of the second flip flop D1 and the output

of the second flip flop which is Q2 is given to input of the third flip flop which is D2 and the

complemented output (Q3’) will be given to the input of the first flip D0.

 The difference between the ring counter and Johnson counter is that it does not require pre-set.

Er. Pralhad Chapagain

114

JOHNSON COUNTERS

Er. Pralhad Chapagain

115

Sequential Circuit – SET A

Sequential Circuit – SET A

Sequential Circuit – SET A

Sequential Circuit – SET A

Sequential Circuit – SET A

Sequential Circuit – SET A

INTRODUCTION TO MICROPROCESSOR

➢ Microprocessor is a multipurpose, programmable, clock-driven, register-base, electronic

device that reads binary instructions from a storage device called memory, accepts binary

data as input and processes data according to instructions, and provides results as output.

❖ Input: Digital input from I/O or Memory

❖ Process: Process the instruction

❖ Output: Digital output to I/O or memory

➢ A typical programmable machine can be represented with four components: microprocessor,

memory, input, and output. The physical components of this system are called hardware. A

set of instructions written for the microprocessor to perform a task is called a program, and a

group of program is called software. 127

INTRODUCTION TO MICROPROCESSOR

➢ In general microprocessor performs three basic tasks:

1. Data transfer between itself and memory or I/O unit

2. Arithmetical or Logical operation on data, and

3. Switching and decision making

➢ Operation on above tasks are based on the instruction provided to the microprocessor. So, a

critical steps in performing any task is retrieval of instruction, understanding the command

and executing it.

➢ This can be listed as:

1. Fetch the instruction

2. Decode instruction

3. Execute the command from the instruction

128

INTRODUCTION TO MICROPROCESSOR

➢ A microprocessor incorporates the functions of a computer’s central processing unit (CPU)

on a single integrated chip (IC).

129

MICROCONTROLLER

➢ A microcontroller is a small computer on a single integrated circuit containing a processor

core, memory, and programmable input/output peripherals. Microcontrollers are designed for

embedded applications, in contrast to the microprocessors used in personal computers or

other general purpose applications.

130

MICROPROCESSOR VS MICROCONTROLLER

131

ORGANIZATION OF MICROPROCESSOR BASED SYSTEM

➢ The basic structure of microprocessor based system includes microprocessor, I/O and

memory (ROM & R/WM). These components are organized around a common

communication path called bus.

132

BUS ORGANIZATION/ 3-BUS ARCHITECTURE

133Fig: 3-Bus Architecture of Microprocessor

BUS ORGANIZATION/ 3-BUS ARCHITECTURE

Address bus:

➢ The address bus consists of 16, 20, 24 or 32 parallel signal lines that is used to specify a

physical address.

➢ On these lines the CPU sends out the address of the memory location that is to be written to

or from.

➢ The address bus is unidirectional: bit flow in one direction- from the MPU to peripheral

devices.

➢ The width of the address bus determines the amount of memory a system can address.

➢ For example, a system with a 16-bit address bus can address 216 (64 KB) memory locations.
134

BUS ORGANIZATION/ 3-BUS ARCHITECTURE

Data bus:

➢ The data bus consist of 8, 16 or 32 parallel signal lines and are bidirectional that carries the

actual data being processed.

➢ CPU can read data in from memory and send data out to memory on these lines.

135

BUS ORGANIZATION/ 3-BUS ARCHITECTURE

Control bus:

➢ The control bus is comprised of various single lines that carry synchronization signals.

➢ The MPU uses such lines to provide timing signals.

➢ These are no a group of lines like data and address buses, but individual lines that provide a

pulse to indicate an MPU operation.

➢ The MPU generates specific control signals for every operations (such as Memory read or

I/O write) it performs.

➢ These signals are used to identify a device type with which the MPU intended to

communicate.
136

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

➢ The task of entering and altering the programs for the ENIAC (electronic numerical

integrator and computer) was extremely tedious.

➢ The programming concept could be facilitated if the program could represent in a form

suitable for storing in memory alongside the data.

➢ Then a computer could get its instruction by reading them form the memory and a program

could be set or altered by setting the values of a portion of memory.

➢ This approach is known “stored program concept”, was first adopted by John Von Neumann

and hence the architecture of computer he proposed is name as Von-Neumann’s architecture.

➢ (Note: 8085 μp uses this architecture)
137

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

138

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

➢ Main memory is used to store both data and instructions.

➢ The ALU is capable for performing arithmetic and logical operation on binary data.

➢ The control unit (CU) interprets the instruction in memory and causes them to be executed.

➢ The I/O unit gets operated from the control unit. The input/output unit helps inputting data

and getting results.

➢ The Von-Neumann’s Architecture is the fundamental basis for the architecture of today’s

digital computers.

139

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

➢ The memory of Von-Neumann machine consists of thousand storage location called words of

40 binary digits (bits).

➢ Both data and instruction are stored in it.

➢ The storage locations of control unit and ALU are called registers.

➢ The various registers of this model are MBR, MAR, IR, IBR, PC, AC.

➢ Memory Buffer Register (MBR):

➢ It consists of a word to be stored in memory or is used to receive a memory or is used to receive

a word from memory.

➢ Memory address Register (MAR):

➢ It contains the address in memory of the world to be written from or read into the MBR.

140

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

➢ Instruction register (IR):

➢ Contain the 8 bit op-code (operation code) instruction being executed.

➢ Instruction buffer register (IBR):

➢ It is used to temporarily hold the instruction from a word in memory.

➢ Program counter (PC):

➢ It contains address of next instruction to be fetched from memory.

➢ Ac (Accumulator) and MQ (multiplier quotient):

➢ They are employed to temporarily hold operands and results of ALU operations.

141

STORED PROGRAM CONCEPT AND VON NEUMANN
MACHINE

Advantages:

➢ Computer can handle instruction as easily as data

➢ Ease of loading program into memory

➢ Efficient use of memory

➢ Cost effective due to same program and data memory

Disadvantages:

➢ Required special hardware protection mechanism to protect instruction and data being overlapped by

each other.

➢ Low speed because concurrent fetching of data and instruction was not possible.
142

HARVARD ARCHITECTURE

143

Fig. Block diagram of the Harvard architecture

HARVARD ARCHITECTURE

➢ Harvard Architecture based computer consist so separate memory spaces for the programs

(instruction) and data.

➢ Each memory space has its own address and data bus.

➢ Thus both instruction and data can fetch from memory concurrently.

➢ From the figure it is seen that there are two data and two address buses for the program and

data memory spaces respectively.

➢ The program memory data bus and data memory data are multiplexed to form single data

bus where as program memory Address and data memory address are multiplexed to form

single address bus.
144

HARVARD ARCHITECTURE

➢ Hence there are two blocks of RAM chip: One for program memory and another for data

memory space.

➢ Data memory address arithmetic unit generates data memory address.

➢ The data memory address bus carries the memory address of data where as program memory

address bus carries the memory address of the instruction.

➢ Central arithmetic logic unit consists of the ALU, multiplier, Accumulator, etc.

➢ The Program Counter is used to address program memory.

➢ PC always contains the address of next instruction to be fetched. Control unit control the

sequence of operations to be executed.

➢ The data and control bus are bidirectional where as address bus is unidirectional.
145

HARVARD ARCHITECTURE

Advantages:

➢ Concurrent fetching of data and instruction was possible so it provide higher speed

➢ No overwriting of program and data

Disadvantages:

➢ Methods or mechanism of storing program into program memory and data into data memory

had to be developed

➢ Higher cost due to separate program and data memory

➢ No optimum use of memory.

146

INTRODUCTION TO REGISTER TRANSFER LANGUAGE
(RTL)

FETCH – REGISTERS

➢ Memory Address Register (MAR)

➢ Connected to address bus

➢ Specifies address for read or write op

➢ Memory Buffer Register (MBR)

➢ Connected to data bus

➢ Holds data to write or last data read

➢ Program Counter (PC)

➢ Holds address of next instruction to be

fetched

➢ Instruction Register (IR)

➢ Holds last instruction fetched

147

Introduction to 8086 Microprocessor

➢ 8086 Microprocessor is an enhanced version of 8085 Microprocessor that was

designed by Intel in 1978.

➢ It is a 16 bit Microprocessor having 20 address lines and 16 data lines that provides

up to 1 MB storage.

➢ It consists of powerful instruction set, which provides operations like multiplication

and division easily.

172
Er. Pralhad Chapagain

Features 8086 Microprocessor

➢ It has an instruction queue, which is capable of storing six instruction bytes from the memory

resulting in faster processing

➢ It was the first 16 bit processor having 16 bit ALU, 16 bit registers, internal data bus, and 16 bit

external data bus resulting in faster processing

➢ It is available at different clock frequencies 5 MHz, 8 MHz and 10 MHz

➢ It uses two stages of pipelining, i e Fetch Stage and Execute Stage, which improves performance

➢ Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue

➢ Execute stage executes these instructions

➢ It has 256 vectored interrupts

➢ It consists of 29 000 transistors

173
Er. Pralhad Chapagain

Comparison with 8085

➢ Size: 8085 is 8 bit microprocessor, whereas 8086 is 16 bit microprocessor

➢ Address Bus : 8085 has 16 bit address bus while 8086 has 20 bit address bus

➢ Memory: 8085 can access up to 64 KB, whereas 8086 can access up to 1 MB of memory

➢ Instruction Queue: 8085 doesn’t have an instruction queue, whereas 8086 has an

instruction queue

➢ Pipelining: 8085 doesn’t support a pipelined architecture while 8086 supports a pipelined

architecture

➢ I/O: 8085 can address 2 8 =256 I/O's, whereas 8086 can access 2 16 =65 536 I/O's

➢ Cost: The cost of 8085 is low whereas that of 8086 is high

174Er. Pralhad Chapagain

Internal Architecture of 8086

175Er. Pralhad Chapagain

Execution unit (EU) and its components

➢ Index register

➢ The two index registers SI (Source index) and DI (Destination Index) are used in indexed

addressing. The instructions that process data strings use the SI and DI index register

together with DS and ES respectively, in order to distinguish between the source and

destination address.

➢ Flag register

➢ The 8086 has nine 1 bit flags. Out of 9 six are status and three are control flags.

The control bits in the flag register can be set or reset by the programmer.

176Er. Pralhad Chapagain

Execution unit (EU) and its components

Control flags:

➢ D-Direction Flag

➢ This is used by string manipulation instructions. If this flag bit is ‘0’ , the string is processed

beginning from the lowest address to the higher address, i.e. auto incrementing mode

otherwise the string is processed from the highest address towards the lowest address, i.e.

autodecrementing mode.

➢ I-Interrupt flag

➢ If this flag is set the maskable interrupts are recognized by the CPU, otherwise they are ignored.

➢ T- Trap flag

➢ If this flag is set the processor enters the single step execution mode. In other words, a trap

interrupt is generated after execution of each instruction. The processor executes the current

instruction and the control is transferred to the Trap interrupt service routine.
177Er. Pralhad Chapagain

Execution unit (EU) and its components

Status Flags:

➢ O- Overflow flag

➢ This flag is set if an arithmetic overflow occurs, i.e. if the result of a signed operation is

large enough to be accommodated in a destination register.

➢ S - Sign flag

➢ This flag is set when the result of any computation is negative. For signed computations,

the sign flag equals the MSB of the result.

➢ Z- Zero

➢ This flag is set when the result of the computation is or comparison performed by the

previous instruction is zero. 1 for zero result, 0 fir nonzero result

178Er. Pralhad Chapagain

Execution unit (EU) and its components

➢ Ac- Auxiliary Carry

➢ This is set if there is a carry from the lowest nibble, i.e. bit three during the addition or

borrow for the lowest nibble i.e. bit three, during subtraction.

➢ P- Parity flag

➢ This flag is set to 1 if the lower byte of the result contains even number of 1s otherwise

reset.

➢ Cy-Carry flag:

➢ This flag is set when there is a carry out of MSB in case of addition or a borrow in case

of subtraction.

179Er. Pralhad Chapagain

Segment and offset address

➢ Segments are special areas defined in a program for containing the code, data and stack.

➢ A segment begins on a paragraph boundary.

➢ A segment register is of 16 bits in size and contains the starting address of a segment.

➢ A segment begins on a paragraph boundary, which is an address divisible by decimal 16 or

hex 10.

➢ Consider a DS that begins at location 038EOH. In all cases, the rightmost hex digit is zero,

the computer designers decided that it would be unnecessary to store the zero the zero

digit in the segment register.

➢ Thus 038E0H is stores in register as 038EH.

180Er. Pralhad Chapagain

Segment and offset address

➢ The distance in bytes from the segment address to another location within the

segment is expressed as an offset or displacement.

➢ Suppose the offset of 0032H for above example of data segment. Processor

combines the address of the data segment with the offset as:

➢ SA: OA (segment address: offset address)

➢ 038E: 0032 H = 038E * 10 +0032 = 038E0 + 0032

➢ Physical address = 03912H

181Er. Pralhad Chapagain

Addressing modes in 8086

➢ Addressing modes describe types of operands and the way in which they are

accessed for executing an instruction.

➢ An operand address provides source of data for an instruction to process an

instruction to process.

➢ An instruction may have from zero to two operands. For two operands first is

destination and second is source operand.

➢ The basic modes of addressing are register, immediate and memory which are

described below.

182Er. Pralhad Chapagain

Addressing modes in 8086

Register Addressing:

➢ For this mode, a register may contain source operand, destination operand or both.

➢ E.g. MOV AH, BL MOV DX, CX

Immediate Addressing

➢ In this type of addressing, immediate data is a part of instruction, and appears in

the form of successive byte or bytes.

➢ This mode contains a constant value or an expression.

➢ E.g. MOV AH, 35H MOV BX, 7A25H

183Er. Pralhad Chapagain

Addressing modes in 8086

Direct memory addressing:

➢ In this type of addressing mode, a 16-bit memory address (offset) is directly

specified in the instruction as a part of it.

➢ One of the operand is the direct memory and other operand is the register.

➢ E.g. ADD AX, [5000H]

➢ Note: Here data resides in a memory location in the data segment, whose effective

address may be computed using 5000H as the Offset address and content of DS as

segment address.

➢ The effective address, here, is 10H*DS + 5000H.
184Er. Pralhad Chapagain

Addressing modes in 8086

Direct offset addressing

➢ In this addressing, a variation of direct addressing uses arithmetic operators to

modify an address.

➢ E.g. ARR DB 15, 17, 18, 21

➢ MOV AL, ARR [2] ; MOV AL, 18

➢ ADD BH, ARR+3 ; ADD BH, 21

185Er. Pralhad Chapagain

Addressing modes in 8086

Indirect memory addressing:

➢ Indirect addressing takes advantage of computer’s capability for segment: offset

addressing.

➢ The registers used for this purpose are base register (BX and BP) and index register

(DI and SI) E.g. MOV [BX],AL

 ADD CX, [SI]

186Er. Pralhad Chapagain

Addressing modes in 8086

Base displacement addressing:

➢ This addressing mode also uses base registers (BX and BP) and index register (SI and

DI), but combined with a displacement (a number or offset value) to form an

effective address.

➢ E.g. MOV BX, OFFSET ARR ; LEA BX, ARR

➢ MOV AL, [BX +2]

➢ ADD TBL [BX], CL ;TBL [BX] [BX + TBL] e.g. [BX + 4]

187Er. Pralhad Chapagain

Addressing modes in 8086

Base index addressing:

➢ This addressing mode combines a base registers (BX or BP) with an index register (SI or DI)

to form an effective address.

➢ E.g. MOV AX, [BX +SI]

➢ ADD [BX+DI], CL

Base index with displacement addressing

➢ This addressing mode, a variation on base- index combines a base register, an index register,

and a displacement to form an effective address.

➢ E.g. MOV AL, [BX+SI+2]

➢ ADD TBL [BX +SI], CH
188Er. Pralhad Chapagain

Addressing modes in 8086

String addressing:

➢ This mode uses index registers, where SI is used to point to the first byte or word of

the source string and DI is used to point to the first byte or word of the destination

string, when string instruction is executed.

➢ The SI or DI is automatically incremented or decremented to point to the next byte

or word depending on the direction flag (DF).

➢ E.g. MOVS, MOVSB, MOVSW

189Er. Pralhad Chapagain

Coding in assembly language

➢ Assembly language programming has taken its place in between the machine

language (low level) and the high level language.

➢ High level language’s one statement may generate many machine instructions.

➢ Low level language consists of either binary or hexadecimal operation. One symbolic

statement generates one machine level instructions.

190Er. Pralhad Chapagain

Coding in assembly language

➢ Advantage of ALP

➢ They generate small and compact execution module.

➢ They have more control over hardware.

➢ They generate executable module and run faster.

➢ Disadvantages of ALP

➢ Machine dependent.

➢ Lengthy code

➢ Error prone (likely to generate errors).

191Er. Pralhad Chapagain

Coding in assembly language

192Er. Pralhad Chapagain

assembly language features

➢ The main features of ALP are program comments, reserved words, identifies,

statements and directives which provide the basic rules and framework for the

language.

Program comments:

➢ The use of comments throughout a program can improve its clarity.

➢ It starts with semicolon (;) and terminates with a new line.

➢ E.g. ADD AX, BX ; Adds AX & BX

193Er. Pralhad Chapagain

assembly language features

Reserved words

➢ Certain names in assembly language are reserved for their own purpose to be used

only under special conditions and includes

➢ Instructions : Such as MOV and ADD (operations to execute)

➢ Directives: Such as END, SEGMENT (information to assembler)

➢ Operators: Such as FAR, SIZE

➢ Predefined symbols: such as @DATA, @ MODEL

194Er. Pralhad Chapagain

assembly language features

Identifiers:

➢ An identifier (or symbol) is a name that applies to an item in the program that

expects to reference.

➢ Two types of identifiers are Name and Label.

➢ Name refers to the address of a data item such as NUM1 DB 5, COUNT DB 0

➢ Label refers to the address of an instruction.

➢ E. g: MAIN PROC FAR

➢ L1: ADD BL, 73

195Er. Pralhad Chapagain

assembly language features

Statements:

➢ ALP consists of a set of statements with two types

➢ Instructions, e. g. MOV, ADD

➢ Directives, e. g. define a data item

196Er. Pralhad Chapagain

assembly language features

Directives:

➢ The directives are the number of statements that enables us to control the way in

which the source program assembles and lists.

➢ These statements called directives act only during the assembly of program and

generate no machine-executable code. The different types of directives are:

197Er. Pralhad Chapagain

assembly language features

1) The page and title listing directives:

➢ The page and title directives help to control the format of a listing of an assembled

program.

➢ This is their only purpose and they have no effect on subsequent execution of the program.

➢ The page directive defines the maximum number of lines to list as a page and the maximum

number of characters as a line.

➢ PAGE [Length] [Width]

➢ Default : Page [50][80]

➢ TITLE gives title and place the title on second line of each page of the program.

➢ TITLE text [comment]
198Er. Pralhad Chapagain

assembly language features

2) SEGMENT directive

➢ It gives the start of a segment for stack, data and code.

 Seg-name Segment [align] [combine][‘class’]

 Seg-name ENDS

➢ Segment name must be present, must be unique and must follow assembly language naming conventions.

➢ An ENDS statement indicates the end of the segment.

➢ Align option indicates the boundary on which the segment is to begin; PARA is used to align the segment

on paragraph boundary.

➢ Combine option indicates whether to combine the segment with other segments when they are linked

after assembly. STACK, COMMON, PUBLIC, etc are combine types.

➢ Class option is used to group related segments when linking. The class code for code segment, stack for

stack segment and data for data segment.
199Er. Pralhad Chapagain

assembly language features

3) PROC Directives

➢ The code segment contains the executable code for a program, which consists of

one or more procedures, defined initially with the PROC directives and ended with

the ENDP directive.

➢ PROC - name PROC [FAR/NEAR]

➢ ……………

➢ PROC – name ENDP

➢ FAR is used for the first executing procedure and rest procedures call will be NEAR.

➢ Procedure should be within segment.

200Er. Pralhad Chapagain

assembly language features

4) END Directive

➢ An END directive ends the entire program and appears as the last statement.

➢ ENDS directive ends a segment and ENDP directive ends a procedure.

➢ END PROC-Name

5) ASSUME Directive

➢ An .EXE program uses the SS register to address the stack, DS to address the data segment

and CS to address the code segment.

➢ Used in conventional full segment directives only.

➢ Assume directive is used to tell the assembler the purpose of each segment in the program.

➢ Assume SS: Stack name, DS: Data Segname CS: code segname

201Er. Pralhad Chapagain

assembly language features

6) Processor directive

➢ Most assemblers assume that the source program is to run on a basic 8086 level

computer.

➢ Processor directive is used to notify the assembler that the instructions or features

introduced by the other processors are used in the program.

➢ E.g. .386 - program for 386 protected mode.

202Er. Pralhad Chapagain

assembly language features

7) Dn Directive (Defining data types)

➢ Assembly language has directives to define data syntax: [name] Dn expression

➢ The Dn directive can be any one of the following:

➢ DB Define byte 1 byte

➢ DW Define word 2 bytes

➢ DD Define double 4 bytes

➢ DF defined farword 6 bytes

➢ DQ Define quadword 8 bytes

➢ DT Define 10 bytes 10 bytes
203Er. Pralhad Chapagain

VAL1 DB 25

ARR DB 21, 23, 27, 53

MOV AL, ARR [2] or

MOV AL, ARR + 2 ; Moves 27 to AL register

assembly language features

8) The EQU directive

➢ It can be used to assign a name to constants.

➢ E.g. FACTOR EQU 12

9) DUP Directive

➢ It can be used to initialize several locations to zero. e. g. SUM DW 4 DUP(0)

➢ Reserves four words starting at the offset sum in DS and initializes them to Zero.

➢ Also used to reserve several locations that need not be initialized. In this case (?) is used

with DUP directives. E. g. PRICE DB 100 DUP(?)

➢ Reserves 100 bytes of uninitialized data space to an offset PRICE.

204Er. Pralhad Chapagain

assembly language features

10) DOSSEG

➢ There is a standard order for placing the stack, code and data segments One can

place the segments in any order as well.

➢ This directives tells the assembler to place the segments in standard order

11) MODEL

➢ This directive determines the size of each segment .All of the program models

except tiny result in the creation of exe program. The tiny model creates a com

program.

205Er. Pralhad Chapagain

assembly language features

206Er. Pralhad Chapagain

assembly language features

207Er. Pralhad Chapagain

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

Microprocessor– SET A

MICROPROCESSOR SYSTEM

➢ A microcomputer consists of a set of components or modules of three basic types

CPU memory and I/O units which communicate with each other.

217
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

218
Er. Pralhad Chapagain

Fig (a) - Pin Diagram of 8085 & Fig(b) - logical schematic of Pin diagram

PIN CONFIGURATION OF 8085

➢ The microprocessor is a clock-driven semiconductor device consisting of electronic

logic circuits manufactured by using either a large-scale integration (LSI) or very-

large-scale integration (VLSI) technique.

➢ The microprocessor is capable of performing various computing functions and

making decisions to change the sequence of program execution.

➢ In large computers, a CPU implemented on one or more circuit boards performs

these computing functions.

➢ The microprocessor is in many ways similar to the CPU, but includes the logic

circuitry, including the control unit, on one chip.

219
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

➢ The microprocessor can be divided into three segments for the sake clarity,

arithmetic/logic unit (ALU), register array, and control unit.

➢ 8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

➢ 1. Power supply and clock signals

➢ 2. Address bus

➢ 3. Data bus

➢ 4. Control and status signals

➢ 5. Interrupts and externally initiated signals

➢ 6. Serial I/O ports

220
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

Power supply and Clock frequency signals:

➢ Vcc : + 5 volt power supply

➢ Vss : Ground

➢ X1, X2 : Crystal or R/C network or LC network connections to set the frequency of

internal clock generator.

➢ The frequency is internally divided by two. Since the basic operating timing

frequency is 3 MHz, a 6 MHz crystal is connected externally.

➢ CLK (output) :Clock Output is used as the system clock for peripheral and devices

interfaced with the microprocessor.
221

Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

2. Address Bus:

➢ A8 - A15

➢ It carries the most significant 8 bits of the memory address or the 8 bits of the I/O address.

3. Multiplexed Address / Data Bus:

➢ AD0 - AD7

➢ These multiplexed set of lines used to carry the lower order 8 bit address as well as data bus.

➢ During the opcode fetch operation, in the first clock cycle, the lines deliver the lower order address

A0 - A7.

➢ In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

➢ The CPU may read or write out data through these lines.

222
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

223
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

Control and Status signals:

➢ These signals include two control signals (RD & WR) three status signals (IO/M, S1 and So)

to identify the nature of the operation and one special signal (ALE) ti indicate the beginning

of the operations.

➢ ALE (output) - Address Latch Enable.

➢ This signal helps to capture the lower order address presented on the multiplexed address /

data bus. When it is the pulse, 8085 begins an operation. It generates AD0 - AD7 as the separate

set of address lines A0 –A7.

➢ RD (active low) - Read memory or IO device.

➢ This indicates that the selected memory location or I/O device is to be read and that the data

bus is ready for accepting data from the memory or I/O device.
224

Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

➢ WR (active low) - Write memory or IO device.

➢ This indicates that the data on the data bus is to be written into the selected memory location or

I/O device.

➢ IO/M’ (output) - Select memory or an IO device.

➢ This status signal indicates that the read / write operation relates to whether the memory or I/O

device.

➢ It goes high to indicate an I/O operation.

➢ It goes low for memory operations.

225
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

Status Signals:

➢ It is used to know the type of current operation of the microprocessor.

226
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

Interrupts and Externally initiated operations:

➢ They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

➢ There are five hardware interrupts called,

➢ On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active low

INTA (Interrupt Acknowledge) signal.

227
Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

➢ Hold (Input)

➢ This indicates peripheral controller requesting the bus.

➢ HLDA (Output)

➢ This indicates the acknowledgement for the Hold request.

➢ READY (Input)

➢ It is used to delay the microprocessor read and write cycles until a slow responding peripheral is

ready to send or accept data.

➢ Memory and I/O devices will have slower response compared to microprocessors.

➢ Before completing the present job such a slow peripheral may not be able to handle further data or

control signal from CPU.

➢ The processor sets the READY signal after completing the present job to access the data.

➢ The microprocessor enters into WAIT state while the READY pin is disabled.
228

Er. Pralhad Chapagain

PIN CONFIGURATION OF 8085

➢ Reset In (input, active low)

➢ This signal is used to reset the microprocessor.

➢ The program counter inside the microprocessor is set to zero.

➢ The buses are tri-stated.

➢ Reset Out (Output)

➢ It indicates CPU is being reset.

➢ Used to reset all the connected devices when the microprocessor is reset.

Single Bit Serial I/O ports:

➢ SID (input) - Serial input data line

➢ SOD (output) - Serial output data line

➢ These signals are used for serial communication.
229

Er. Pralhad Chapagain

Bus structure

➢ A microcomputer consists of a set of components or modules of three basic types CPU

memory and I/O units which communicate with each other.

➢ A bus is a communication pathway between two or more such components.

➢ A bus actually consists of multiple communication pathway or lines. Each line is capable of

transmitting signals representing binary 1 and 0.

➢ Several lines of the bus can be used to transmit binary data simultaneously.

➢ The bus that connects major microcomputer components such as CPU, memory or I/O is

called the system bus.

➢ System bus consists of number of separate lines. Each line assigned a particular function.

➢ Fundamentally in any system bus the lines can be classified into three group buses.
230

Er. Pralhad Chapagain

Bus structure

Data Bus:

➢ Data bus provides the path for monitoring data between the system modules. The bus has various

numbers of separate lines like 8, 16, 32, or 64. Which referred as the width of data bus .These number

represents the no. of bits they can carry because each carry 1 bit.

Address Bus:

➢ Each Lines of address bus are used to designate the source or destination of the

data on data bus.

➢ For example, if the CPU requires reading a word (8, 16, 32) bits of data from

memory, it puts the address of desired word on address bus. The address bus is also

used to address I/O ports. Bus width determines the total memory the up can

handle.

231
Er. Pralhad Chapagain

Bus structure

Control Bus:

➢ The control bus is a group of lines used to control the access to control signals and the use of the

data and address bus. The control signals transmit both command and timing information between

the system modules. The timing signals indicate the validity of data and address information, where

as command signals specify operations to be performed. Some of the control signals are:

➢ Memory Write (MEMW): It causes data on the bus to be loaded in to the address location.

➢ Memory Read (MEMR): It causes data from the addressed location to be placed on the data bus.

➢ I/O Write (IOW): It causes the data on the bus to be output to the addressed I/O port.

➢ I/O Read (IOR): It causes the data from the addressed I/O port to be placed on the bus.

➢ Transfer Acknowledge: This signal indicates that data have been accepted from or placed on the bus.

232
Er. Pralhad Chapagain

Bus structure

➢ Bus Request: It is used to indicate that a module wants to gain control of the bus.

➢ Bus Grant: It indicates that a requesting module has been granted for the control of

bus.

➢ Interrupt Request: It indicates that an interrupt has been pending.

➢ Interrupt Acknowledge: it indicates that the pending interrupt has been recognized.

233
Er. Pralhad Chapagain

Bus types

Synchronous Bus:

➢ In a synchronous bus, The Occurrence of the events on the bus is determined by a

clock .

➢ The clock transmits a regular sequence of 0’s & 1’s of equal duration. All the events

start at beginning of the clock cycle.

234
Er. Pralhad Chapagain

Bus types

➢ Here the CPU issues a START signal to indicate the presence of address and control

information on the bus.

➢ Then it issues the memory read signal and places the memory address on the

address bus.

➢ The addressed memory module recognizes the address and after a delay of one

clock cycle it places the data and acknowledgment signal on the buses.

➢ In synchronous bus, all devices are tied to a fixed rate, and hence the system can

not take advantage of device performance but it is easy to implement.

235
Er. Pralhad Chapagain

Bus types

Asynchronous Bus:

➢ In an asynchronous bus, the timing is maintained in such way that occurrence of

one event on the bus follows and depends on the occurrence of previous event.

236
Er. Pralhad Chapagain

Bus types

➢ Here the CPU places Memory Read (Control) and address signals on the bus.

➢ Then it issues master synchronous signal (MSYNC) to indicate the presence of valid

address and control signals on the bus.

➢ The addressed memory module responds with the data and the slave synchronous

signal (SSYNC)

237
Er. Pralhad Chapagain

Timing diagram

➢ It is a graphical representation. It represents the execution time taken by each

instruction in a graphical format. The execution time is represented in T-state.

238
Er. Pralhad Chapagain

Instruction cycle

➢ It is defined as the time required to complete the execution of an instruction.

➢ The necessary steps that the CPU carries out to fetch an instruction and necessary data

from the memory and to execute it constitute an instruction cycle.

➢ An instruction cycle consists of fetch cycle and execute cycle.

➢ In fetch cycle CPU fetches op-code from the memory.

➢ The necessary steps which are carried out to get data if any from the memory and to

perform the specific operation specified in instruction constitute an execute cycle.

➢ The total time required to execute an instruction is given by IC=FC+EC

➢ The 8085 consists of 1-5 machine cycle or operation.

239
Er. Pralhad Chapagain

fetch cycle

➢ The first byte of an instruction is its op-code.

➢ The content of the program counter, which is the address of the memory location

where op-code is available, is send to the memory.

➢ The memory places the op-code on the data bus so as to transfer it to CPU.

➢ The entire process takes 3 clock cycle and then the instruction is decoded in next

one clock cycle.

240
Er. Pralhad Chapagain

Execute cycle

➢ The op-code from the memory goes to the IR, from the IR it goes to the decoder

which decodes instruction. After the instruction is decoded execution begins.

➢ If the operand is in general purpose register, execution is performed immediately.

➢ If an instruction contains data or operand address, then CPU has to perform some

read operations to get the desired data.

➢ In some instruction write operation is performed. In write cycle data are sent from

the CPU to the memory of an o/p device.

➢ In some cases execute cycle may involve one or more read or write cycle or both.

241
Er. Pralhad Chapagain

machine cycle

➢ It is defined as the time required to complete one operation of accessing memory i/p, o/p or acknowledging the

external request. This cycle may consists of 3 to 6 T states.

➢ Op-code Fetch Cycle

➢ Memory Read Cycle (3T)

➢ Memory Write Cycle (3T)

➢ I/O Read Cycle (3T)

➢ I/O Write Cycle (3T)

➢ Interrupt acknowledge

➢ Bus idle

T-state:

➢ It is defined as one sub-division of the operation performed in one clock period. These sub-division are internal states

synchronized with system clock and each T state precisely equal to one clock period.

242
Er. Pralhad Chapagain

Opcode fetch machine cycle

➢ The first machine cycle of every instruction is opcode fetch cycle in which the 8085 finds the

nature of the instruction to be executed.

➢ In this machine cycle, the microprocessor places the contents of PC on the address bus then

by reading operation it reads the op-cod of an instruction from determined memory

location. The length of this cycle is not fixed.

Step1: (T1 state)

➢ The 8085 processor places the contents of program counter on the address bus, activate the ALE

and send the status signals IO/M’, S1, and S0 with logical status (0 1 1) respectively.

Step 2: (T2 state)

➢ The low order address disappears from AD0-AD7 lines. Also, 8085 processor activates the RD

signals to enable the addressed memory location which places its contents on the data bus

(AD0-AD7).
243

Er. Pralhad Chapagain

Opcode fetch machine cycle

Step 3: (T3 state)

➢ The processor loads the contents of data bus on its Instruction Register and deactivates the

RD signal to disables the memory devices.

Step4: (T4 state)

➢ Microprocessor decodes the instruction and performed the task specified into instruction.

Step5: (T5 & T6 states)

➢ The processor performs stack write, internal 16 bits, or conditional return operations

depending upon the type of instruction.

➢ One byte instructions those operate on 16 bit data are executed in T5 & T6. For example

DCX H, PCHL, SPHL, INX H, etc.

244
Er. Pralhad Chapagain

Opcode fetch machine cycle

245
Er. Pralhad Chapagain

Instruction that takes 6-
T for opcode fetch

CRISP

C- CALL, Conditional
RET.

R- RST

I- INX ,DCX

S- SPHL, PCHL

P- PUSH

MEMORY READ machine cycle

➢ The microprocessor executes the memory read cycle to read the data from RAM or ROM memory.

8085 processor executes this machine cycle in 3 T-states. Steps below show the details of this

machine cycle:

➢ Step1 (T1 state):

➢ processor places the address on the address lines from SP, Rp, or PC and activates ALE in order to

latch low-order of address. Also, it sends the status signals IO/M’, S1, and S0 with logical status (0 1 0)

for memory read machine cycle.

➢ Step2 (T2 state):

➢ 8085 processor activates the RD’ signals to enable the addressed memory location which places its

contents on the data bus (AD0-AD7).

➢ Step 3: (T3 state)

➢ The processor loads the contents of data bus on specified register (F, A, B, C, D, E, H, and L) and

deactivates the RD’ signal to disables the memory devices.
246

Er. Pralhad Chapagain

MEMORY READ machine cycle

247
Er. Pralhad Chapagain

MEMORY WRITE machine cycle

➢ The microprocessor executes the memory write cycle to store the data into RAM or stack memory.

8085 processor executes this machine cycle in 3 T-states. Steps below show the details of this

machine cycle:

➢ Step1 (T1 state):

➢ processor places the address on the address lines from SP or Rp and activates ALE in order to latch

low-order of address. Also, it sends the status signals IO/M’, S1, and S0 with logical status (0 0 1) for

memory write machine cycle.

➢ Step2 (T2 state):

➢ 8085 processor places the data on data bus and activates the WR’ signal to writing data into

addressed memory location.

➢ Step 3: (T3 state)

➢ The processor deactivates the WR’ signal which disables the memory device and terminates the write

operation.
248

Er. Pralhad Chapagain

MEMORY WRITE machine cycle

249
Er. Pralhad Chapagain

IO READ machine cycle

➢ The microprocessor executes the IO read cycle to read the data from input device. 8085 processor

executes this machine cycle in 3 T-states. Steps below show the details of this machine cycle:

➢ Step1 (T1 state):

➢ processor places the address on the address lines from SP, Rp, or PC and activates ALE in order to

latch low-order of address. Also, it sends the status signals IO/M’, S1, and S0 with logical status (1 1 0)

for IO read machine cycle.

➢ Step2 (T2 state):

➢ 8085 processor activates the RD’ signals to enable the addressed input device which places its

contents on the data bus (AD0-AD7).

➢ Step 3: (T3 state)

➢ The processor loads the contents of data bus on specified register (F, A, B, C, D, E, H, and L) and

deactivates the RD’ signal to disables the input device.
250

Er. Pralhad Chapagain

IO READ machine cycle

251
Er. Pralhad Chapagain

IO write machine cycle

➢ The microprocessor executes the IO write cycle to store the data into output device. 8085 processor

executes this machine cycle in 3 T-states. Steps below show the details of this machine cycle:

➢ Step1 (T1 state):

➢ processor places the address on the address lines from SP or Rp and activates ALE in order to latch low-order of

address. Also, it sends the status signals with logical status (1 0 1) for IO write machine cycle.

➢ Step2 (T2 state):

➢ 8085 processor places the data on data bus and activates the WR’ signal to writing data into addressed output

device.

➢ Step 3: (T3 state)

➢ The processor deactivates the WR’ signal which disables the output device and terminates the writing operation.

252
Er. Pralhad Chapagain

IO write machine cycle

253
Er. Pralhad Chapagain

memory

254
Er. Pralhad Chapagain

memory

➢ Memory is an essential component of the microcomputer system.

➢ It is used to store both instructions and data.

➢ Memory is made up of registers and the number of bits stored in a register is called

memory word .

➢ Memory word is identified by an address .

➢ If microprocessor uses 16 bit address , then there will be maximum of 216= 65536

memory addresses ranging from 0000H to FFFFH.

➢ There are various types of memory which can be classified in to two main groups

i.e. Primary memory and Secondary memory.
255

Er. Pralhad Chapagain

memory

Processor Memory

➢ Processor memory refers to a set of microprocessor registers.

➢ They are used to hold temporary results when a computation is in progress Although use of such registers enhances

the execution speed

➢ The cost involved in the approach forces a microcomputer designer to include only a few registers include the

processor.

➢ In 8085 we have registers like A, B, C, D, E, H, L, SP, PC etc. to store data temporarily

Primary Memory

➢ It is the storage area where all programs are executed. The microprocessor can directly access only those items that

are stored in the primary memory

➢ Hence, all programs and data must be within the primary memory prior to execution.

➢ Usually, the size of the primary memory is much larger than that of processor memory and its operating speed is much

slower than processor's registers.

256
Er. Pralhad Chapagain

memory

➢ Primary memories can be divided into two main groups

➢ Read only memory (ROM)

➢ Random Access memory .(RAM)

RAM

➢ It is used primarily for information that is likely to be altered, such as writing

programs or receiving data.

➢ This memory is volatile Two types of RAM are available

➢ Static RAM

➢ This memory is made up of flip flops and stores the bits as voltage.
257

Er. Pralhad Chapagain

memory

➢ Each memory cell requires six transistors.

➢ This memory is more expensive and power consuming than dynamic memory.

➢ It is called ' because the information doesn't need a constant update.

➢ These memories are commonly used for cache memory.

➢ This types of memory is very fast with access time is 15 to 30 nanoseconds but is

physically bulky.

258
Er. Pralhad Chapagain

memory

Dynamic RAM (DRAM)

➢ Dynamic random access memory is an improvement over the expensive and bulky SRAM.

➢ DRAM uses a different approach to store data Information is stored as charges in a very small

capacitor.

➢ If a charge exists in a capacitor, it's interpreted as 1 The absence of a charge will be interpreted as 0.

➢ Because DRAM uses capacitors there is a chance of leakage of charge.

➢ Thus it needs to use a constant refresh signal to keep the information in the memory (every few

millisecond)

➢ DRAM technology allows several memory units, called cells to be packed at very high density.

➢ Therefore, these chips can hold very large amount of information.

➢ Most PCs today use DRAM.

➢ Access time for DRAM is 80 nanoseconds or more, slower than SRAM, and two or three times faster

than ROM
259

Er. Pralhad Chapagain

memory

260
Er. Pralhad Chapagain

DRAM

memory
Read only memory (ROM)

➢ ROM is a non volatile memory and can be read only.

➢ It is used to store data and programs that are not to be altered

➢ Among other things ROM is needed for storing an initial program called boot strap loader.

➢ The bootstrap loader is a program whose function is to start the computer software operating when power is turned

on.

➢ Since RAM is volatile, its contents are destroyed when power is turned off . The contents of ROM remain unaltered

after power is turned off and on again

➢ The startup of a computer consists of turning the power on and starting the execution of an initial program.

➢ Thus when power is turned on, the hardware of the computer sets the program counter to the first address of the

bootstrap loader.

➢ The bootstrap program loads a portion of the operation of the operating system from disk to main memory and

control is then transferred to the operating system, which prepares the computer for general use.

261
Er. Pralhad Chapagain

memory

Masked ROM

➢ They are permanent ROM recorded by masking Generally manufacturers use

this process to produce ROM in large numbers

PROM

➢ These are un programmed ROM The fuses on the ROM are not burned.

➢ A programmer can program this ROM according to his needs.

➢ The information stored is permanent.

262
Er. Pralhad Chapagain

memory
EPROM

➢ These ROM can be reprogrammed and erased. Two types of such EPROM are available

UV EPROM

➢ The memory of such ROM can be erased by exposing the chip via a lid or window on the chip to ultraviolet light.

➢ The erase time generally varies between 10 to 30 minutes.

➢ The EPROM can be programmed by inserting the chip into a socket of the PROM programmer and providing

proper addresses.

➢ The programming time varies from 1 to 2 minutes.

EEPROM

➢ This does not require UV rays to be erased It can be completely erased or have certain byes changed, using

electrical pulses

➢ Writing to EEPROM is slower than writing to RAM, so it can not be used in high speed circuits. 263
Er. Pralhad Chapagain

memory

FLASH MEMORY

➢This is a modified EEPROM. The difference is the erasure procedure.

➢EEPROM can be erased at a register level, but flash memory must be

erased either in its entirety or at the sector (block) level

Secondary Memory

➢Secondary memory are storage devices. These devices have high data

holding capacity.

➢They store programs that are not frequently used by the processor.

➢They are slow and have larger size.
264

Er. Pralhad Chapagain

memory

Performance of memory

➢Access time (ta)

➢ Read access time: It is the average time required to read the unit of information from memory

➢ Write access time: It is the average time required to write the unit of information on memory

➢ Access rate ra = 1 /ta

➢ Cycle time (tc)

➢ It is the average time that lapses between two successive read operation Cycle rate (rc) =

bandwidth = (1/tc)

265
Er. Pralhad Chapagain

memory

➢Access modes of memory

➢ Random access

➢ In random access mode, the ta is independent of the location from which the data is accessed

like MOS memory

➢ Sequential access

➢ In that mode, the ta is dependent of the location form which the data is accessed like magnetic

type

➢ Semi random access

➢ The semi random access combines these two For e.g. In magnetic disk, any track can be

accessed at random But the access within the track must be in serial fashion
266

Er. Pralhad Chapagain

Memory hierarchy
➢ Capacity, cost and speed of different types of memory play a vital role while designing a memory

system for computers.

➢ If the memory has larger capacity, more application will get space to run smoothly.

➢ It's better to have fastest memory as far as possible to achieve a greater performance. Moreover for

the practical system, the cost should be reasonable.a

➢ There is a tradeoff between these three characteristics cost, capacity and access time. One cannot

achieve all these quantities in same memory module because

➢ If capacity increases, access time increases (slower) and due to which cost per bit decreases.

➢ If access time decreases (faster), capacity decreases and due to which cost per bit increases.

➢ The designer tries to increase capacity because cost per bit decreases and the more application

program can be accommodated. But at the same time, access time increases and hence decreases

the performance.
267

Er. Pralhad Chapagain

Memory hierarchy
➢ So the best idea will be to use memory hierarchy.

➢ Memory Hierarchy is to obtain the highest possible access speed while minimizing the total cost of

the memory system.

➢ Not all accumulated information is needed by the CPU at the same time.

➢ Therefore, it is more economical to use low-cost storage devices to serve as a backup for storing the

information that is not currently used by CPU

➢ The memory unit that directly communicate with CPU is called the main memory

➢ Devices that provide backup storage are called auxiliary memory

➢ The memory hierarchy system consists of all storage devices employed in a computer system from

the slow by high-capacity auxiliary memory to a relatively faster main memory, to an even smaller

and faster cache memory

268
Er. Pralhad Chapagain

Memory hierarchy
➢ The main memory occupies a central position by being able to communicate directly with the CPU

and with auxiliary memory devices through an I/O processor

➢ A special very-high-speed memory called cache is used to increase the speed of processing by

making current programs and data available to the CPU at a rapid rate

➢ CPU logic is usually faster than main memory access time, with the result that processing speed is

limited primarily by the speed of main memory

➢ The cache is used for storing segments of programs currently being executed in the CPU and

temporary data frequently needed in the present calculations

➢ The memory hierarchy system consists of all storage devices employed in a computer system from

slow but high capacity auxiliary memory to a relatively faster cache memory accessible to high speed

processing logic. The figure below illustrates memory hierarchy.

269
Er. Pralhad Chapagain

Memory hierarchy

270
Er. Pralhad Chapagain

As we go down in the

hierarchy

➢ Cost per bit decreases

➢ Capacity of memory

increases

➢ Access time increases

➢ Frequency of access of

memory by processor also

decreases.

Hierarchy List

➢ Registers

➢ L1 Cache

➢ L2 Cache

➢ Main memory

➢ Disk cache

➢ Disk

➢ Optical

➢ Tape

Memory structure and its requirements

➢ Internally a memory consists of address decoder, input buffer, output buffer, registers with

address lines, data lines, and (𝑅𝐷’) (𝑊𝑅’), (𝐶𝑆’) control lines.

➢ The number of address lines will be determined by the memory capability.

➢ The number of data lines will be determined by memory size.

➢ For 2n X m memory capability, the number of address line =n and the number of data lines

=m.

271
Er. Pralhad Chapagain

Address decoding

272
Er. Pralhad Chapagain

Serial interface

273
Er. Pralhad Chapagain

Parallel interface

➢ The device which can handle data at higher speed cannot support with serial interface.

➢ N bits of data are handled simultaneously by the bus and the links to the device directly.

➢ Achieves faster communication but becomes expensive due to need of multiple wires.

274
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

➢ The information exchanged between a microprocessor and an I/O interface circuit consists

of input or output data and control information.

➢ The status information enable the microprocessor monitor the device and when it is ready

then send or receive data.

➢ Control information is the command by microprocessor to cause I/O device to take some

action.

➢ If the device operates at different speeds, then microprocessor can be used to select a

particular speed of operation of the device.

➢ The techniques used to transfer data between different speed devices and computer is

called synchronizing. Different techniques under synchronizing are:

275
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

Simple I/O:

➢ For simple I/O, the buffer switch and latch switches i. e. LED are always connected to the input

and output ports.

➢ The devices are always ready to send or receive data.

➢ Here cross line indicate the time for new valid data.

Wait Interface(Simple strobe I/O)

➢ In this technique, microprocessor need to wait until the device is ready for the operation.

276
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

➢ Consider a simple keyboard consisting of 8 switches connected to a

microprocessor through a parallel interface circuit (Tri-state buffer).

➢ The switch is of dip switches.

➢ In order to use this keyboard as an input device the microprocessor should be

able to detect that a key has been activated.

➢ This can be done by observing that all the bits are in required order.

➢ The processor should repeatedly read the state of input port until it finds the

right order of bits i.e. at least 1 bit of 8 bits should be 0.

➢ Consider the tri-state A/D converter

277
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

➢ Used to convert analog to digital data which can be read by I/O unit of MP

➢ When SOC appears 1, I/O unit should ready for reading binary data/digital data.

➢ When EOC’s status is 1, then I/O unit should stop to read data.

➢ Strobe signal indicates the time at which data is being activated to transmit.

278
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

Single Handshaking:

➢ The peripheral outputs some data and send STB’ signal to microprocessor. “here

is the data for you.”

➢ Microprocessor detects asserted STB’ signal, reads the data and sends an

acknowledge signal (ACK) to indicate data has been read and peripheral can

send next data. “I got that one, send me another.”

➢ Microprocessor sends or receives data when peripheral is ready.

279
Er. Pralhad Chapagain

Synchronizing the computer with peripherals

Double Handshaking:

➢ The peripheral asserts its STB’ line low to ask MP “Are you ready?”

➢ The MP raises its ACK line high to say “ I am ready”.

➢ Peripheral then sends data and raises its STB’ line low to say “Here is some valid

data for you.”

➢ MP then reads the data and drops its ACK line to say, “I have the data, thank

you, and I await your request to send the next byte of data.”

280
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

➢ The Intel 8255A is a general purpose programmable I/O device designed for use with Intel

microprocessors.

➢ It has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports: A and B, with the

remaining bits as port C.

➢ The 8-bits of port C can be used as individual bits or be grouped in two 4-bits ports: Cupper (Cu) and

Clower (Cl).

➢ The functions of these ports are defined by writing a control word in the control register.

281
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Block diagram:

282
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Data Bus Buffer

➢ The 3-state bidirectional 8-bit buffer is used to interface the 8255A to the system data bus.

➢ Data is transmitted or received by the buffer upon execution of input or output instructions by the

CPU.

➢ Control words and status information are also transferred through the data bus buffer.

Read/Write Control Logic

➢ The function of the block is to manage all of the internal and external transfers of both data and

control or status words.

➢ It accepts inputs from the CPU address and control buses and in turn, issues commands to both of

the control groups.

➢ Chip Select (CS’): A “low” on this pin enables the communications between the 8255A and the CPU.
283

Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

➢ Read (RD’): A “low” on this input enables the 8255A to send the data or status information to the

CPU on the data bus. In essence, it allows the CPU to read from the 8255A.

➢ Write (WR’): A “low” on this input pin enables the CPU to write data or control words into the

8255A.

➢ Reset (RESET): A “high” to this pin clears the control register and sets all ports (A, B and C) in the

input mode.

➢ A0 and A1: These input signals controls the selection of one of the three ports or the control word

register. They are connected to the least significant bits of the address bus.

➢ The CS’ signal is the master chip select, and A0 and A1 specify one of the I/O ports or the control

register as given below.

284
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

➢ Group A and Group B controls

➢ Each of the control blocks (Group A and Group B) accepts “commands” from the Read/Write control logic,

receives control word from the internal data bus and issues the proper commands to its associated ports.

➢ Control Group A – Port A and Port CUpper (C7 – C4)

➢ Control Group B – Port B and Port CLower (C3 – C0)

285
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Control Word

➢ When A0 and A1 pins have value 1, the mapped address addresses the control register which is the

8-bit register to write the specific content according to the port conditions although it cannot be

read. The content of this register is called control word which specifies an I/O function for each port.

➢ To communicate with peripherals through 8255, following steps are necessary.

➢ Determine the Port addresses of Ports A, B and C and of the control register, according to Chip Select

logic and address lines A1 and A0.

➢ Write a control word in control register.

➢ Write I/O instructions to communicate with peripherals through Ports A, B and C.

286
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

287
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Operating modes:

➢ Bit Set/Reset mode: The BSR mode is used to set or reset the bits in port C.

➢ I/O mode: The I/O mode is further divided into three modes: mode 0, mode 1 and mode 2.

➢ In mode 0, all ports function as simple I/O ports.

➢ Mode 1 is a handshake mode whereby ports A and/or B use bits from port C as handshake signals. In

the handshake mode, two types of I/O data transfer can be implemented: status check and interrupt.

➢ In mode 2, port A can be set up for bidirectional data transfer using handshake signals from port C

and port B can be set up either in mode 0 or mode 1.

288
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

BSR Mode (Bit Set/Reset)

➢ BSR mode is concerned only with eight bits of port C, which can be set or reset by writing an

appropriate control word in the control register.

➢ A control word with bit D7=0 is recognized as a control word and it does not alter any previously

transmitted control word with bit D7=1; thus the I/O operations of ports A and B are not affected by

a BSR control word.

➢ In the BSR mode individual bits of port C can be used for applications such as On/Off switch

BSR Control Word:

➢ This control word, when written in control register, sets or resets one bit at a time, as specified in

figure

289
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

290
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Mode 0 (Basic Input/output)

➢ This functional configuration provides simple input and output operation for each of the three ports.

No ‘handshaking” is required; data is simply written to or read from a specified port..

➢ Mode 0 basic functional definitions:

➢ Two 8-bit ports and two 4-bit ports

➢ Any port can be input or output

➢ Outputs are latched

➢ Inputs are not latched

➢ 16 different input/output configurations are possible in this mode.

291
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Mode 1 (Strobe Input/output)

➢ The functional configuration provides a means for transferring I/O data to or from a specified port in

conjunction with strobes or handshaking signals.

➢ In mode 1, port A and port B use the lines of port C to generate or accept these handshaking signals.

➢ Mode 1 basic functional definitions:

➢ Two groups (Group A and Group B)

➢ Each group contains one 8-bit data port and one 4-bit control/data port

➢ The 8-bit data port can be either input or output. Both inputs and outputs are

latched.

➢ The 4-bit port is used for control and status of the 8-bit data port.

292
Er. Pralhad Chapagain

Programmable peripheral interface (ppi) – 8255A

Mode 2 (Strobe Bidirectional Bus I/O)

➢ The functional configuration provides a means for communicating with a peripheral device or a structure on a

single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O).

➢ “Handshaking Signals” are provided to maintain proper bus flow discipline in a similar manner to Mode 1.

➢ Interrupt generation and enable/disable functions are also available.

➢ Mode 2 basic functional definitions:

➢ Used in Group A only

➢ One 8-bit bidirectional bus port (Port A) and a 5-bit control port (Port C)

➢ Both inputs and outputs are latched

➢ The 5-bit control port (Port C) is used for control and status for the 8-bit, bidirectional bus port

(Port A)

293
Er. Pralhad Chapagain

Serial data transmission

➢Data are sent one bit at a time over the transmission channel.

➢However, since most processors process data in parallel, the transmitter

needs to transform incoming parallel data into serial data and the

receiver needs to do the opposite.

➢ Cost of communication hardware is considerable reduced since only a

single wire or channel is require for transmission.

➢ Slow as compared to parallel transmission.

➢ Serial data can be sent synchronously or asynchronously.

294
Er. Pralhad Chapagain

Serial data transmission - advantages

➢ Data transmission over longer distance because

voltage loss is not much a problem in serial

communication.

➢ Serial; 1 →-3V to -25V

➢ 0 → +3V to +25V

➢ Parallel; 1→ +5V

➢ 0 → 0V

➢ Requires less number of wires than parallel and so

cheaper to transmit data.

➢ Crosstalk is less of an issue because there are fewer

conductors’ compared to that of parallel cables.

➢ Many IC and peripherals have serial interface

➢ Clock skew between different cables is not an issue

➢ Serials can be clocked at higher data rate

➢ Serial cable can be longer than parallel

➢ Cheaper to implement

➢ But in serial mode of transfer, only one bit of a word

is transferred at a time so that data transfer rate is

very slow; it is the one of the demerit over parallel

data transfer

295
Er. Pralhad Chapagain

Serial data transmission

Serial Synchronous Data Transmission

➢ Data is transmitted or received based on a clock pulse (i.e. one bit at each clock pulse)

➢ In order to interpret the data correctly, the receiving device must know the start and end of each

data unit.

➢ The transmitter must know the number of data units to be transferred and the receiver must be

synchronized with the data boundaries.

➢ Therefore, there must be synchronization between the transmitter and receiver.

➢ Usually one or more SYNC characters are used to indicate the start of each synchronous data stream

or frame of data.

➢ Transmitter sends a large block of data characters one after the other with no time between

characters.
296

Er. Pralhad Chapagain

Serial data transmission

➢ Transmitting device sends data continuously to the receiving device.

➢ If the data is not ready to be transmitted, the line is held in marking condition.

➢ To indicate the start of transmission, the transmitter sends out one or more SYNC characters or a

unique bit pattern called a flag, depending on the system being used.

➢ The receiving device waits for data, when it finds the SYNC characters or the flag then starts

interpreting the data which shifts the data following the SYNC characters and converts them to

parallel form so they can be read in by a computer.

297
Er. Pralhad Chapagain

Serial data transmission

➢Advantages and Disadvantages of Synchronous Communication

➢Main advantage of Synchronous data communication is the high speed.

The synchronous communications require high-speed

peripherals/devices and a good-quality, high bandwidth communication

channel.

➢ The disadvantage includes the possible in accuracy. Because when a

receiver goes out of Synchronization, loosing tracks of where individual

characters begin and end. Correction of errors takes additional time.

298
Er. Pralhad Chapagain

Serial data transmission

Serial Asynchronous Data Transmission

➢ The receiving device does not need to be synchronized with the transmitting device.

➢ The transmitting device can send one or more data units when it is ready to send data.

➢ Each data unit must be formatted i.e. must contain start and stop bits for indicating beginning and

the end of data unit. It also includes one parity bit to identify odd or even parity of data.

➢ To send ASCII character, the framing of data should contain:

➢ 1 start bit: Beginning of data

➢ 8 bit character: Actual data transferred

➢ 1 or 2 stop bits: End of data

➢ When no data is being sent, the signal line is in a constant high or marking state.

299
Er. Pralhad Chapagain

Serial data transmission

➢ The beginning of the data character is indicated by the line going low for 1 bit time and this bit is

called a start bit.

➢ The data bits are then sent out on the line one after the other where the least significant bit is sent

out first.

➢ Parity bit should contain to check for errors in received data.

➢ After the data bit and a parity bit, the signal line is returned high for at least 1 bit time to identify the

end of the character, this always high bit is referred to as a stop bit. Some older systems use 2 stop

bits.

➢ Asynchronous communication is used when slow speed peripherals communicate with the

computer.

➢ The main disadvantage of asynchronous communication is slow speed transmission.

300
Er. Pralhad Chapagain

Serial data transmission

➢Asynchronous communication however, does not require the complex

and costly hardware equipment's as is required for synchronous

transmission.

301
Er. Pralhad Chapagain

Serial data transmission

➢ Synchronous versus Asynchronous serial data transmission

302
Er. Pralhad Chapagain

Bit rate and baud rate

➢ Bit Rate:

➢ Measure of no of data bits transmitted per

sec.

➢ E.g. 2400 bits per sec means 2400 zeros or

ones can be transmitted in one sec.

➢ Baud Rate:

➢ No of times a signal in a communication

channel changes state.

➢ Change state means change from 0 to 1 or

from 1 to 0 up to 2400 times per sec.

➢ E.g. 2400 baud rate means “the channel

can change states up to 2400 time per sec”

➢ If one frame of data is coded with 1 bit

then baud rate and bit rate are same.

303
Er. Pralhad Chapagain

Standards in serial i/o

➢ The serial I/O technique is commonly used to interface different peripheral terminals such

as printers, modems with microcomputers which are designed and manufactured by

various manufacturers.

➢ Therefore, a common understanding must exist, among various manufacturing and user

groups that can ensure compatibility among different equipment.

➢ The standard is defined as the understanding which is accepted in industry and by users.

➢ A standard is normally defined by a professional organizations such as IEEE (Institute of

Electrical and Electronics Engineers), EIA (Electronic Industries Association) as a de jure

standard. However, a widespread practice can become a de facto standard.

➢ In serial I/O, data can be transmitted as either current or voltage.
304

Er. Pralhad Chapagain

Rs-232c
➢ RS-232C is an interface developed to standardize the interface between data terminal equipment (DTE) and

data communication equipment (DCE) employing serial binary data exchange.

➢ Modem and other devices used to send serial data are called data communication equipment (DCE).

➢ The computers or terminals that are sending or receiving the data are called data terminal equipment (DTE).

➢ RS- 232C is the interface standard developed by electronic industries Association (EIA) in response to the

need for the signal and handshake standards between the DTE and DCE.

305
Er. Pralhad Chapagain

Rs-232c
RS-232C has following standardize features.

➢ It uses 25 pins (DB – 25P) or 9 Pins (DE – 9P) standard, where 9 pins standard does not use all

signals i.e. data, control, timing and ground.

➢ It describes the voltage levels, impendence levels, rise and fall times, maximum bit rate and

maximum capacitance for all signal lines.

➢ It specifies that DTE connector should be male and DCE connector should be female.

➢ It can send 20kBd for a distance of 50 ft.

➢ The voltage level for RS-232 are:

➢ A logic high or 1 or mark, -3V to -15V

➢ A logic low or 0 or space, +3v to +15v

➢ Normally ±12V voltage levels are used
306

Er. Pralhad Chapagain

Rs-232c

➢ Mc1488 line driver converts logic 1 to -9V Logic 0 to +9v

➢ Mc1489 line receiver converts RS – 232 to TTL

➢ Signal levels of RS-232 are not compatible with that of the DTE and DCE which are TTL signals for

that line driver such as M 1488 and line receiver MC1489 are used.

307
Er. Pralhad Chapagain

Rs-232c

308
Er. Pralhad Chapagain

Rs-232c
➢ Data Terminal Ready (DTR):

➢ After the terminal power is turned on and terminal runs any self checks, it asserts data terminal ready (DTR’) signal to

tell the modem that it is ready.

➢ Data Set Ready (DSR):

➢ When the MODEM is powered up and ready to transmit or receive data, it will assert data set ready (DSR’) to the

terminal. Under manual control or terminal control, modem then dials up the computer. If the computer is available, it

will send back a specified tone.

➢ Request to send (RTS):

➢ When a terminal has a character ready to send, it will assert a request-to-send (RTS’) signal to the modem.

➢ Data Carrier Detect (DCD):

➢ The modem will then assert its data-carrier-detect (DCD’) signal to the terminal to indicate that it has established

connection with the computer.

309
Er. Pralhad Chapagain

Rs-232c
➢ Clear to send (CTS):

➢ When the modem is fully ready to receive data, it asserts the clear-to-send (CTS’) signal back to the terminal.

➢ Ring indicator (RI):

➢ It indicates that a ring has occurred at modem. Deactivating DTR or DSR breaks the connection but RI works

independently of DTR i.e. a modem may activate RI signal even if DTR is not active.

➢ Transmitted Data (TxD):

➢ The terminal then sends serial data characters to the modem.

➢ Received Data (RxD):

➢ Modem will receive data from terminal through this line.

➢ Data Signal Rate Detect (DSRD):

➢ It is used for switching different baud rate.

310
Er. Pralhad Chapagain

Rs-232c
Digital Data Transmission Using Modem and standard Phone Lines

➢ Standard telephone system can be used for sending serial data over long distances.

➢ However, telephone lines are designed to handle voice, bandwidth of telephone lines ranges from

300 HZ

➢ to 3400 HZ.

➢ Digital signal requires a bandwidth of several megahertz. Therefore, data bits should be converted

into audio tones, this is accomplished through modems.

311
Er. Pralhad Chapagain

Rs-232c
➢ DTE asserts DTR’ to tell the modem it is ready.

➢ Then DCE asserts DSR’ signal to the terminal and dials up.

➢ DTE asserts RTS’ signal to the modem.

➢ Modem then asserts DCD’ signal to indicate that it has established connection with the computer.

➢ DCE asserts CTS’ signals, then DTE sends serial data.

➢ When sending completed, DTE asserts RTS’ high, this causes modem to un assert its CTS’ signal

and stop transmitting similar handshake taken between DCE and DTE other side.

➢ To communicate from serial port of a computer to serial port of another computer without

modem, null-modem is used.

312
Er. Pralhad Chapagain

Rs-232c – null modem connection
➢ A zero modem serves for data exchange between DTEs.

➢ Since both the computers are configured as DTEs, directly connecting them by means of the conventional

serial interface cable is impossible; not even the plug fits into the jack of the second terminal.

➢ Also the TxD meets TxD and RxD meets RxD, DTR meets DTR and DSR meets DSR etc.

➢ This means that outputs are connected to outputs and inputs are connected to inputs. With this convention,

no data transfer is possible.

➢ For the transmission of data, it is required to twist the TxD and RxD lines.

➢ In this way, the transmitted data of one terminal (PC) becomes received data of other and vice versa.

➢ As shown in figure, activation of RTS to begin a data transfer gives rise to an activation of CTS on same DTE

and to an activation of DCD on other DTE.

313
Er. Pralhad Chapagain

Rs-232c – null modem connection
➢ Further, an activation of DTR leads to rise of DSR and RI on other DTE. Hence for every DTE, it is

simulated that a DCE is on the end of line, although a connection between two DTEs is actually

present.

➢ Zero modem can be operated with standard BIOS and DOS functions.

314
Er. Pralhad Chapagain

Rs-232c – connection to printer

➢ PC may send data faster than the printer can acknowledge it.

➢ Therefore, pin 19 (Buffer Full) of printer is connected to DSR of PC side.

315
Er. Pralhad Chapagain

Rs-232c – connection to printer

➢An overflow of data deactivates the DSR signal and communication

halts

➢On PC RTS and CTS are connected to each other so that a transmission

request from PC immediately enables the transmission.

➢ Printer as DTE refers to print anything as long as no active signal is

present at inputs. Of CTS, DSR and DCD.

➢ This problem is resolved by connecting RTS with CTS and DTR with

DCD and DSR.

316
Er. Pralhad Chapagain

Rs-423a
➢ A major problem with RS-232C is that it can only transmit data reliably for about 50 ft at its maximum rate of

20Kbd.

➢ If longer lines are used the transmission rate has to be drastically reduced due to open signal lines with a
common signal ground.

➢ Another EIA standard which is improvement over RS-232C is RS-423A.

➢ The standardize features of RS-423 are:

➢ This standard specifies a low impendence single ended signal which can be sent over 50 ohm coaxial cable and

partially terminated at the receiving end to prevent reflection.

➢ Voltage levels

➢ Logic High 4V - 6V negative

➢ Logic Low 4V - 6V positive

➢ It allows a maximum data rate of 100 Kbd over 40 ft line or a maximum baud rate of 1 Kbd over 4000 ft line.

317
Er. Pralhad Chapagain

Rs-422a
It is a newer standard for serial data transfer. It specifies that each signal will be sent differentially over two

adjacent wires in a ribbon cable or a twisted pair of wires uses differential amplifier to reject noise.

➢ The term differential in this standard means that the signal voltage is developed between two signal lines

rather than between signal line and ground as in RS-232C and RS-423A.

➢ Any electrical noise induced in one signal line will be induced equally in the other signal line.

➢ A differential line receiver MC3486 responds only to the voltage difference between its two inputs so any
noise voltage that is induced equally on two inputs will not have any effect on the output of the differential
receiver.

➢ RS-422A has following standardized features:

➢ Logic high is transmitted by making ‘b’ line more positive than ‘a’ line.

➢ Logic low is transmitted by making ‘a’ line more positive than ‘b’ line.

➢ The voltage difference between the two lines must be greater than 0.4V but less than 12V.

318
Er. Pralhad Chapagain

comparison

319
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)
➢ The data transfer between a fast storage media such as magnetic disk and memory unit is limited

by the speed of the CPU

➢ Thus we can allow the peripherals directly communicate with each other using the memory buses,

removing the intervention of the CPU This type of data transfer technique is known as DMA or

direct memory access

➢ During DMA the CPU is idle and it has no control over the memory buses

➢ The DMA controller takes over the buses to manage the transfer directly between the I/O devices

and the memory unit

320
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)

➢ Bus Request It is used by the DMA controller to request the CPU to relinquish the

control of the buses

➢ Bus Grant It is activated by the CPU to inform the external DMA controller that the

buses are in high impedance state and the requesting DMA can take control of the

buses Once the DMA has taken the control of the buses it transfers the data

➢ DMA transfer uses two signal

➢ HOLD

➢ HLDA

321
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)
➢ HOLD

➢ Active high input signal to 8085 from another master requesting the use of address and data

bus

➢ After receiving the HOLD request, the MPU relinquishes the buses in the following machine

cycle

➢ All buses are tri stated and HOLD acknowledge signal is sent out

➢ MPU regains the control of the buses after HOLD goes low

➢ HLDA

➢ This is an active high output signal indicting that MPU is relinquishing control of the buses

➢ A DMA controller uses these signals as if it were a peripheral requesting the MPU for the control of the

buses

322
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)

323
Er. Pralhad Chapagain

The sequence of DMA Transfer

DMA (DIRECT MEMORY ACCESS)
The sequence of DMA Transfer

➢ Originally, microprocessor is connected to the memory as shown in fig with

switches closed for address, data and control buses When peripheral wants to

transfer data using DMA transfer, it sends DMA request, DREQ, signal to the DMA

controller

➢ If the input (of the DMA controller is unmasked, the DMA controller will send a

hold request, HRQ signal to the microprocessors HOLD input

➢ The microprocessor finishes the current machine cycle and floats its buses,

sending out a hold acknowledge signal, HLDA, to the DMA controller

324
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)

➢ When DMA controller receives HLDA signal, it will send out a control signal which

disconnects the processors from buses and connects DMA controller to the buses

Now DMA controller sends out the address of the byte to be transferred and send

out DMA acknowledge (to the peripheral device to tell it to get ready to output

the byte

➢ Then the DMA transfer begins and finally when the data transfer is complete, the

DMA controller un asserts its hold request signal to the processor and releases the

buses

325
Er. Pralhad Chapagain

DMA (DIRECT MEMORY ACCESS)

➢ DMA performs data transfer operation The different DMA transfer modes are as

follows

➢ Burst or Block transfer DMA

➢ Cycle steal or Single byte transfer DMA

➢ Transparent DMA

326
Er. Pralhad Chapagain

PROGRAMMABLE DMA CONTROLLER – INTEL 8257

327
Er. Pralhad Chapagain

PROGRAMMABLE DMA CONTROLLER – INTEL 8257

➢ It is a device to transfer the data directly between IO device and memory without

through the CPU. So it performs a high-speed data transfer between memory and

I/O device.

➢ The features of 8257 is,

➢ The 8257 has four channels and so it can be used to provide DMA to four I/O devices.

➢ Each channel can be independently programmable to transfer up to 64kb of data by
DMA.

➢ Each channel can be independently perform read transfer, write transfer and verify
transfer.

➢ The functional blocks of 8257 as shown in the above figure are data bus buffer,

read/write logic, control logic, priority resolver and four numbers of DMA

channels.
328

Er. Pralhad Chapagain

PROGRAMMABLE DMA CONTROLLER – INTEL 8257

Operation of 8257 DMA Controller

➢ Each channel of 8257 has two programmable 16-bit registers named as address

register and count register.

➢ Address register is used to store the starting address of memory location for DMA

data transfer.

➢ The address in the address register is automatically incremented after every

read/write/verify transfer.

➢ The count register is used to count the number of byte or word transferred by

DMA.

329
Er. Pralhad Chapagain

PROGRAMMABLE DMA CONTROLLER – INTEL 8257

➢ In read transfer the data is transferred from memory to I/O device.

➢ In write transfer the data is transferred from I/O device to memory.

➢ Verification operations generate the DMA addresses without generating the DMA

memory and I/O control signals.

➢ The 8257 has two eight bit registers called mode set register and status register.

330
Er. Pralhad Chapagain

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

Microprocessor System

INTERRUPTS

➢ Interrupt is signals send by an external device to the processor, to request the processor to perform a

particular task or work.

➢Mainly in the microprocessor based system the interrupts are used for data transfer between the

peripheral and the microprocessor.

➢The processor will check the interrupts always at the 2nd T-state of last machine cycle.

➢ If there is any interrupt it accept the interrupt and send the INTA (active low) signal to the peripheral.

➢The vectored address of particular interrupt is stored in program counter.

➢The processor executes an interrupt service routine (ISR) addressed in program counter.

➢ It returned to main program by IRET instruction.

344

Er. Pralhad Chapagain

INTERRUPTS

➢Need for Interrupt:

➢ Interrupts are particularly useful when interfacing I/O devices that provide or require data at relatively low data

transfer rate.

345

Er. Pralhad Chapagain

INTERRUPT OPERATIONS

➢The transfer of data between the microprocessor and input /output devices takes place using various

modes of operations like programmed I/O, interrupt I/O and direct memory access.

➢ In programmed I/O, the processor has to wait for a long time until I/O module is ready for operation.

➢So the performance of entire system degraded.

➢To remove this problem CPU can issue an I/O command to the I/O module and then go to do some

useful works. The I/O device will then interrupt the CPU to request service when it is ready to exchange

data with CPU.

➢ In response to an interrupt, the microprocessor stops executing its current program and calls a procedure

which services the interrupt.

346

Er. Pralhad Chapagain

INTERRUPT OPERATIONS

➢The interrupt is a process of data transfer whereby an external device or a peripheral can inform the

processor that it is ready for communication and it requests attention.

➢The response to an interrupt request is directed or controlled by the microprocessor.

347

Er. Pralhad Chapagain

INTERRUPT OPERATIONS

➢ Process of interrupt Operation

➢From the point of view of I/O unit

➢ I/O device receives command from CPU

➢ The I/O device then processes the operation

➢ The I/O device signals an interrupt to the CPU over a control line.

➢ The I/O device waits until the request from CPU.

➢From the point of view of processor

➢ The CPU issues command and then goes off to do its work.

➢When the interrupt from I/O device occurs, the processor saves its program counter & registers of the current

program and processes the interrupt.

➢After completion for interrupt, processor requires its initial task.
348

Er. Pralhad Chapagain

POLLING VERSUS INTERRUPT

➢ Each time the device is given a command, for example ``move the read head to sector 42 of the floppy

disk'' the device driver has a choice as to how it finds out that the command has completed. The device

drivers can either poll the device or they can use interrupts.

➢Polling the device usually means reading its status register every so often until the device's status

changes to indicate that it has completed the request.

➢Polling means the CPU keeps checking a flag to indicate if something happens.

➢An interrupt driven device driver is one where the hardware device being controlled will cause a

hardware interrupt to occur whenever it needs to be serviced.

349

Er. Pralhad Chapagain

POLLING VERSUS INTERRUPT

➢With interrupt, CPU is free to do other things, and when something happens, an interrupt is generated to

notify the CPU. So it means the CPU does not need to check the flag.

➢Polling is like picking up your phone every few seconds to see if you have a call. Interrupts are like

waiting for the phone to ring.

➢ Interrupts win if processor has other work to do and event response time is not critical.

➢Polling can be better if processor has to respond to an event ASAP; may be used in device controller that

contains dedicated secondary processor.

350

Er. Pralhad Chapagain

POLLING VERSUS INTERRUPT

➢ Advantages of interrupt over Polling

➢ Interrupts are used when you need the fastest response to an event. For example, you need to generate a

series of pulses using a timer. The timer generates an interrupt when it overflows and within 1 or 2 sec,

the interrupt service routine is called to generate the pulse. If polling were used, the delay would depend

on how often the polling is done and could delay response to several msecs. This is thousands times

slower.

➢ Interrupts are used to save power consumption. In many battery powered applications, the

microcontroller is put to sleep by stopping all the clocks and reducing power consumption to a few

micro amps. Interrupts will awaken the controller from sleep to consume power only when needed.

Applications of this are hand held devices such as TV/VCR remote controllers.

➢ Interrupts can be a far more efficient way to code. Interrupts are used for program debugging.
351

Er. Pralhad Chapagain

INTERRUPT STRUCTURES

➢A processor is usually provided with one or more interrupt pins on the chip.

➢Therefore a special mechanism is necessary to handle interrupts from several devices that share one of

these interrupt lines. There are mainly two ways of servicing multiple interrupts which are polled

interrupts and daisy chain (vectored) interrupts.

352

Er. Pralhad Chapagain

POLLED INTERRUPT

➢Polled interrupts are handled by using software which is slower than hardware interrupts.

➢Here the processor has the general (common) interrupt service routine (ISR) for all devices.

➢The priority of the devices is determined by the order in which the routine polls each device.

➢The processor checks the starting with the highest priority device.

➢Once it determines the source of the interrupt, it branches to the service routine for that device.

353

Er. Pralhad Chapagain

POLLED INTERRUPT

➢Here several eternal devices are connected to a single interrupt line (INTR) of the microprocessor.

➢When INTR signal goes up, the processor saves the contents of PC and other registers and then branches

to an address defined by the manufactures of the processor.

➢The user can write a program at this address to find the source of the interrupt by starting the polled from

highest priority device.

354

Er. Pralhad Chapagain

DAISY CHAIN (VECTORED) INTERRUPT

➢ In polled interrupt, the time required to poll each device may exceed the time to service the device

through software.

➢To improve this, the faster mechanism called vectored or daisy chain interrupt is used.

➢Here the devices are connected in chain fashion.

➢When INTR pin goes up, the processor saves its current status and then generates INTA signal to the

highest priority device.

➢ If this device has generated the interrupt, it will accept the INTA; otherwise it will push INTA to the next

priority device until the INTA is accepted by the interrupting device

355

Er. Pralhad Chapagain

DAISY CHAIN (VECTORED) INTERRUPT

➢When INTA is accepted, the device provides a means to the processor for findings the interrupt address

vector using external hardware.

➢The accepted device responds by placing a word on the data lines which becomes the vector address

with the help of any hardware through which the processor points to appropriate device service routine.

➢Here no general interrupt service routine need first that means appropriate ISR of the device will be

called.

356

Er. Pralhad Chapagain

INTERRUPT PROCESSING SEQUENCE

➢The occurrence of interrupt triggers a number of events, both in processor hardware and in software. The

interrupt driven I/O operation takes the following steps.

➢ The I/O unit issues an interrupt signal to the processor for exchange of data between them.

➢ The processor finishes execution of the current instruction before responding to the interrupt.

➢ The processor sends an acknowledgement signal to the device that it issued the interrupt.

➢ The processor transfers its control to the requested routine called “Interrupt Service Routine (ISR)” by saving

the contents of program status word (PSW) and program counter (PC).

➢ The processor now loads the PC with the location of interrupt service routine and the fetches the instructions.

The result is transferred to the interrupt handler program.

➢When interrupt processing is completed, the saved register’s value are retrieved from the stack and restored to

the register.

➢ Finally it restores the PSW and PC values from the stack.
357

Er. Pralhad Chapagain

INTERRUPT PROCESSING SEQUENCE

➢The figure summarizes these steps.

➢The processor pushes the flag register on the stack, disables the INTR input and does essentially an

indirect call to the interrupt service procedure.

➢An IRET function at the end of interrupt service procedure returns execution to the main program.

358

Er. Pralhad Chapagain

INTERRUPT - TYPES

1. External interrupts:

➢ These interrupts are initiated by external devices such as A/D converters and classified on following types.

➢Maskable interrupt :

➢ It can be enabled or disabled by executing instructions such as EI and DI. In 8085, EI sets the interrupt enable flip flop

and enables the interrupt process. DI resets the interrupt enable flip flop and disables the interrupt.

➢Non-maskable interrupt:

➢ It has higher priority over maskable interrupt and cannot be enabled or disabled by the instructions.

359

Er. Pralhad Chapagain

INTERRUPT - TYPES

2. Internal interrupts:

➢These are indicated internally by exceptional conditions such as overflow, divide by zero, and execution

of illegal op-code.

➢The user usually writes a service routine to take correction measures and to provide an indication in

order to inform the user that exceptional condition has occurred.

➢There can also be activated by execution of TRAP instruction. This interrupt means TRAP is useful for

operating the microprocessor in single step mode and hence important in debugging.

➢These interrupts are used by using software to call the function of an operating system. Software

interrupts are shorter than subroutine calls and they do not need the calling program to know the

operating system’s address in memory.
360

Er. Pralhad Chapagain

MULTIPLE INTERRUPTS DEALING APPROACHES:

➢ If the processor gets multiple interrupts, then we need to deal these interrupts one at a time and the

dealing approaches are:

Sequential processing of interrupts

➢When user program is executing and an interrupt occurs interrupts are disabled immediately. After the

interrupt service routine completes, interrupts are enabled before resuming the user program and the

processor checks to see if additional interrupts have occurred.

361

Er. Pralhad Chapagain

MULTIPLE INTERRUPTS DEALING APPROACHES:

Priority wise processing of interrupts:

➢The drawback of sequential processing is that it does not take account of relative priority or time critical

needs.

➢The alternative form of this is to define priorities for interrupts and to allow an interrupt of higher

priority to cause a lower priority interrupts pause until high priority interrupt completes its function.

362

Er. Pralhad Chapagain

INTERRUPT SERVICE ROUTINE

➢An interrupt service routine (ISR) is a software routine that hardware invokes in response to an interrupt.

➢ ISRs examine an interrupt and determine how to handle it.

➢ ISRs handle the interrupt, and then return a logical interrupt value.

➢ Its central purpose is to process the interrupt and then return control to the main program.

➢An ISR must perform very fast to avoid slowing down the operation of the device and the operation of

all lower priority ISRs.

➢As in procedures, the last instruction in an ISR should be ret.

363

Er. Pralhad Chapagain

INTERRUPT SERVICE ROUTINE

ISR is responsible for doing the following things:

➢Saving the processor context

➢ Because the ISR and main program use the same processor registers, it is the responsibility of the ISR to save

the processor’s registers before beginning any processing of the interrupt. The processor context consists of the

instruction pointer, registers, and any flags. Some processors perform this step automatically.

➢Acknowledging the interrupt

➢ The ISR must clear the existing interrupt, which is done either in the peripheral that generated the interrupt, in

the interrupt controller, or both.

➢Restoring the processor context

➢After interrupt processing, in order to resume the main program, the values that were saved prior to the ISR

execution must be restored. Some processors perform this step automatically.
364

Er. Pralhad Chapagain

INTERRUPT PROCESSING IN 8085

➢ Interrupt is signals send by an external device to the processor, to request the processor to perform a

particular task or work.

➢Mainly in the microprocessor based system the interrupts are used for data transfer between the

peripheral and the microprocessor.

➢The processor will check the interrupts always at the 2nd T-state of last machine cycle.

➢ If there is any interrupt it accept the interrupt saves the value of PSW and PC into the stack and send the

INTA (active low) signal to the peripheral.

➢The vectored address of particular interrupt is stored in program counter.

➢The processor executes an interrupt service routine (ISR) addressed in program counter

➢ It returned to main program by RET instruction.
365

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢ It supports two types of interrupts.

➢Hardware

➢ Software

➢Software interrupts:

➢ The software interrupts are program instructions. These instructions are inserted at desired locations in a

program.

➢ The 8085 has eight software interrupts from RST 0 to RST 7. The vector address for these interrupts can be

calculated as follows.

➢ Interrupt number * 8 = vector address

➢ For RST 5; 5 * 8 = 40 = 28H

➢Vector address for interrupt RST 5 is 0028H

➢ The Table shows the vector addresses of all interrupts
366

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢Hardware interrupts (Interrupt Pins and Priorities)

➢An external device initiates the hardware interrupts and placing an appropriate signal at the interrupt pin of the

processor.

➢ If the interrupt is accepted then the processor executes an interrupt service routine.

➢ The 8085 has five hardware interrupts

➢ (1) TRAP (2) RST 7.5 (3) RST 6.5 (4) RST 5.5 (5) INTR

367

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢ TRAP:

➢ This interrupt is a non-maskable interrupt. It is unaffected by any mask or interrupt enable.

➢ TRAP bas the highest priority and vectored interrupt.

➢ TRAP interrupt is edge and level triggered. This means hat the TRAP must go high and remain high until it is

acknowledged.

➢ In sudden power failure, it executes a ISR and send the data from main memory to backup memory.

➢ The signal, which overrides the TRAP, is HOLD signal. (i.e., If the processor receives HOLD and TRAP at the

same time then HOLD is recognized first and then TRAP is recognized).

➢ There are two ways to clear TRAP interrupt.

➢ By resetting microprocessor (External signal)

➢ By giving a high TRAP ACKNOWLEDGE (Internal signal)

368

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢RST 7.5:

➢The RST 7.5 interrupt is a maskable interrupt.

➢It has the second highest priority.

➢It is edge sensitive. i.e. Input goes to high and no need to maintain high state until

it recognized.

➢Maskable interrupt. It is disabled by,

➢1. DI instruction

➢2. System or processor reset.

➢3. After reorganization of interrupt.

➢Enabled by EI instruction.

369

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢ RST 6.5 and 5.5:

➢The RST 6.5 and RST 5.5 both are level triggered. . ie. Input goes to high and stay high until it

recognized.

➢Maskable interrupt. It is disabled by,

➢DI, SIM instruction

➢ System or processor reset.

➢After reorganization of interrupt.

➢Enabled by EI instruction.

➢The RST 6.5 has the third priority whereas RST 5.5 has the fourth priority.

370

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢INTR:

➢ INTR is a maskable interrupt.

➢ It is disabled by,

➢ 1. DI, SIM instruction

➢ 2. System or processor reset.

➢ 3. After reorganization of interrupt.

➢ Enabled by EI instruction.

➢Non- vectored interrupt. After receiving INTA (active low) signal, it has to supply the address of ISR.

➢ It has lowest priority.

➢ It is a level sensitive interrupts. ie. Input goes to high and it is necessary to maintain high state until it

recognized.

371

Er. Pralhad Chapagain

TYPES OF INTERRUPT

➢The following sequence of events occurs when INTR signal goes high.

➢ 1. The 8085 checks the status of INTR signal during execution of each instruction.

➢ 2. If INTR signal is high, then 8085 complete its current instruction and sends active low interrupt

acknowledge signal, if the interrupt is enabled.

➢ 3. In response to the acknowledge signal, external logic places an instruction OPCODE on the data bus. In the

case of multibyte instruction, additional interrupt acknowledge machine cycles are generated by the 8085 to

transfer the additional bytes into the microprocessor.

➢ 4. On receiving the instruction, the 8085 save the address of next instruction on stack and execute received

instruction.

372

Er. Pralhad Chapagain

INTERRUPT INSTRUCTIONS

➢ SIM (Set Interrupt Mask) instruction:

➢ The 8085 provide additional masking facility for RST 7.5, RST 6.5 and RST 5.5 using SIM instruction.

➢ This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and serial data

output.

➢ The masking or unmasking of RST 7.5, RST 6.5 and RST 5.5 interrupts can be performed by moving an 8-bit

data to accumulator and then executing SIM instruction.

➢ The format of the 8-bit data is shown below.

373

Er. Pralhad Chapagain

INTERRUPT INSTRUCTIONS

374

Er. Pralhad Chapagain

INTERRUPT INSTRUCTIONS

➢ RIM (Read Interrupt Mask) instruction:

375

Er. Pralhad Chapagain

INTERRUPT INSTRUCTIONS

➢ The status of pending interrupts can be read from accumulator after executing RIM instruction.

➢ This is a multipurpose instruction used to read the status of RST 7.5, 6.5, 5.5 and read serial data input bit.

➢ When RIM instruction is executed an 8-bit data is loaded in accumulator, which can be interpreted as shown in above fig.

➢ Bits 0-2 show the current setting of the mask for each of RST 7.5, RST 6.5 and RST 5.5. They return the contents of the

three masks flip flops. They can be used by a program to read the mask settings in order to modify only the right mask.

➢ Bit 3 shows whether the maskable interrupt process is enabled or not. It returns the contents of the Interrupt Enable Flip

Flop. It can be used by a program to determine whether or not interrupts are enabled.

➢ Bits 4-6 show whether or not there are pending interrupts on RST 7.5, RST 6.5, and RST 5.5. Bits 4 and 5 return the

current value of the RST5.5 and RST6.5 pins. Bit 6 returns the current value of the RST7.5 memory flip flop.

➢ Bit 7 is used for Serial Data Input. The RIM instruction reads the value of the SID pin on the microprocessor and returns it

in this bit.

376

Er. Pralhad Chapagain

INTERRUPT INSTRUCTIONS

➢DI

➢ Disable interrupts

➢ The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled. No flags are affected.

➢ 1 byte instruction

➢ Example: DI

➢EI

➢ Enable interrupts

➢ The interrupt enable flip-flop is set and all interrupts are enabled.

➢ No flags are affected.

➢ After a system reset or the acknowledgement of an interrupt, the interrupt enable flip flop is reset, thus disabling the

interrupts.

➢ This instruction is necessary to enable the interrupts (except TRAP).

➢ 1 byte instruction

➢ Example: EI
377

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢Priority interrupt controller (PIC)

➢The INTR pin can be used for multiple peripherals and to determine priorities among these devices

when two or more peripherals request interrupt service simultaneously, PIC is used.

➢ If there are simultaneous requests, the priorities are determined by the encoder, it responds to the higher

level input, ignoring the lower level input.

➢The drawback of the scheme is that the interrupting device connected to input I7 always has the highest

priority.

➢The PIC includes a status register and a priority comparator in addition to a priority encoder.

378

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢ Today this device is replaced by a more versatile one called a programmable interrupt controller 8259A.

➢When an 8259A receives an interrupt signal on one of its IR inputs, it sends an interrupt request signal to

the INTR input of the μP.

➢Then INTA pulses will cause the PIC to release vectoring information onto the data bus.

379

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

380

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢ It requires two internal address and they are A =0 or A = 1.

➢ It can be either memory mapped or I/O mapped in the system. The interfacing of 8259 to 8085 is shown

in figure is I/O mapped in the system.

➢The low order data bus lines D0-D7 are connected to D0-D7 of 8259.

➢The address line A0 of the 8085 processor is connected to A0 of 8259 to provide the internal address.

➢The 8259 require one chip select signal. Using 3-to-8 decoder generates the chip select signal for 8259.

➢The address lines A4, A5 and A6 are used as input to decoder.

➢The control signal IO/M (low) is used as logic high enables for decoder and the address line A7 is used

as logic low enable for decoder.

➢The I/O addresses of 8259 are shown in table below. 381

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

382

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢ Working of 8259 with 8085 processor:

➢First the 8259 should be programmed by sending Initialization Command Word (ICW) and Operational

Command Word (OCW). These command words will inform 8259 about the following,

➢ 1. Type of interrupt signal (Level triggered / Edge triggered).

➢ 2. Type of processor (8085/8086).

➢ 3. Call address and its interval (4 or 8)

➢ 4. Masking of interrupts.

➢ 5. Priority of interrupts.

➢ 6. Type of end of interrupts.

➢Once 8259 is programmed it is ready for accepting interrupt signal. When it receives an interrupt

through any one of the interrupt lines IR0-IR7 it checks for its priority and also checks whether it is

masked or not. 383

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢ If the previous interrupt is completed and if the current request has highest priority and unmasked, then

it is serviced.

➢For servicing this interrupt the 8259 will send INT signal to INTR pin of 8085.

➢ In response it expects an acknowledge INTA (low) from the processor.

➢When the processor accepts the interrupt, it sends three INTA (low) one by one.

➢ In response to first, second and third INTA (low) signals, the 8259 will supply CALL opcode, low byte

of call address and high byte of call address respectively. Once the processor receives the call opcode

and its address, it saves the content of program counter (PC) in stack and load the CALL address in PC

and start executing the interrupt service routine stored in this call address.

384

Er. Pralhad Chapagain

USING PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

➢ How INTR pin is used in 8085:

➢The microprocessor checks INTR, one clock period before the last T- state of an instruction cycle.

➢ In the 8085, the call instructions require 18 T-states; therefore the INTR pulse should be high at least for

17.5 T-states.

➢The INTR can remain high until the interrupt flip flop is set by the EI instruction in the service routine.

➢ If it remains high after the execution of the EI instruction, the processor will be interrupted again, as if it

was a new interrupt.

385

Er. Pralhad Chapagain

INTERRUPT PROCESSING IN 8086

➢The meaning of ‘interrupts’ is to break the sequence of operation.

➢While the CPU is executing a program, on ‘interrupt’ breaks the normal sequence of execution of

instructions, diverts its execution to some other program called Interrupt Service Routine (ISR).

➢After executing ISR , the control is transferred back again to the main program.

➢ Interrupt processing is an alternative to polling.

386

Er. Pralhad Chapagain

INTERRUPT PROCESSING IN 8086

Interrupt Pins

➢INTR and NMI

➢ INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using STI/CLI instructions or

using more complicated method of updating the FLAGS register with the help of the POPF instruction.

➢When an interrupt occurs, the processor stores FLAGS register into stack, disables further interrupts, fetches

from the bus one byte representing interrupt type, and jumps to interrupt processing routine address of which is

stored in location 4 * <interrupt type>. Interrupt processing routine should return with the IRET instruction.

➢NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR interrupt. Interrupt type

of the NMI is 2, i.e. the address of the NMI processing routine is stored in location 0008h. This interrupt has

higher priority than the maskable interrupt.

➢ – Ex: NMI, INTR.

387

Er. Pralhad Chapagain

INTERRUPT VECTOR TABLE AND ITS ORGANIZATION

➢An interrupt vector is a pointer to where the ISR is stored in memory.

➢All interrupts (vectored or otherwise) are mapped onto a memory area called the Interrupt Vector Table

(IVT).

➢ The IVT is usually located in memory page 00 (0000H - 00FFH).

➢ The purpose of the IVT is to hold the vectors that redirect the microprocessor to the right place when an

interrupt arrives.

➢ Interrupt Vector Table (IVT) is a 1024 bytes sized table that contains addresses of interrupts.

➢Each address is of 4 bytes long of the form offset:segment, which represents the address of a routine to

be called when the CPU receives an interrupt.

➢ IVT can hold maximum of 256 addresses (0 to 255).

➢The interrupt number is used as an index into the table to get the address of the interrupt service routine.
388

Er. Pralhad Chapagain

INTERRUPT VECTOR TABLE AND ITS ORGANIZATION

➢ IVT act as pointers, unlike function call IVT need number as an argument then as a result IVT point us

to interrupt service routine (ISR).

➢ ISR executes its code, when ISR finished then returns back to original statement. Interrupt vector table is

a global table situated at the address 0000:0000H.

➢The interrupt vector table is a feature of the Intel 8086/8088 family of microprocessors.

389

Er. Pralhad Chapagain

INTERRUPT VECTOR TABLE AND ITS ORGANIZATION

390

Er. Pralhad Chapagain

INTERRUPT VECTOR TABLE AND ITS ORGANIZATION

391

Er. Pralhad Chapagain

INTERRUPT VECTOR TABLE AND ITS ORGANIZATION

392

Er. Pralhad Chapagain

DEDICATED INTERRUPTS

INT 00 (divide error)

➢ INT00 is invoked by the microprocessor whenever there is an attempt to divide a number by zero.

➢ ISR is responsible for displaying the message “Divide Error” on the screen

INT 01 (Single step interrupt)

➢For single stepping the trap flag must be 1

➢After execution of each instruction, 8086 automatically jumps to 00004H to fetch 4 bytes for CS: IP of

the ISR.

➢The job of ISR is to dump the registers on to the screen

393

Er. Pralhad Chapagain

DEDICATED INTERRUPTS

INT 02 (Non maskable Interrupt)

➢When ever NMI pin of the 8086 is activated by a high signal (5v), the CPU Jumps to physical memory

location 00008 to fetch CS:IP of the ISR associated with NMI.

INT 03 (break point)

➢A break point is used to examine the cpu and memory after the execution of a group of Instructions.

➢ It is one byte instruction whereas other instructions of the form “INT nn” are 2 byte instructions.

INT 04 (Signed number overflow)

➢There is an instruction associated with this INT 0 (interrupt on overflow).

➢ If INT 0 is placed after a signed number arithmetic as IMUL or ADD the CPU will activate INT 04 if OF

= 1. (OF = Overflow Flag)

➢ In case where OF = 0 , the INT 0 is not executed but is bypassed and acts as a NOP.
394

Er. Pralhad Chapagain

SOFTWARE AND HARDWARE INTERRUPT

➢Types of Interrupts:

➢ There are two types of Interrupts in 8086. They are:

1) Hardware Interrupts (External Interrupts).

➢ The Intel microprocessors support hardware interrupts through:

➢ Two pins that allow interrupt requests, INTR and NMI

➢ One pin that acknowledges, INTA, the interrupt requested on INTR.

Performance of Hardware Interrupts

➢NMI : Non maskable interrupts - TYPE 2 Interrupt

➢ INTR : Interrupt request - Between 20H and FFH

395

Er. Pralhad Chapagain

SOFTWARE AND HARDWARE INTERRUPT

2) Software Interrupts (Internal Interrupts and Instructions) .

➢ Software interrupts can be caused by:

➢ INT instruction - breakpoint interrupt. This is a type 3 interrupt.

➢ INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

➢ INT0 instruction - interrupt on overflow

➢ Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the CPU processes this

interrupt it clears TF flag before calling the interrupt processing routine.

➢ Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape opcode (type 7).

➢ Software interrupt processing is the same as for the hardware interrupts.

➢ Ex: INT n (Software Instructions)

➢ Control is provided through:

➢ IF and TF flag bits

➢ IRET and IRETD

396

Er. Pralhad Chapagain

SOFTWARE AND HARDWARE INTERRUPT

Performance of Software Interrupts

397

Er. Pralhad Chapagain

SOFTWARE AND HARDWARE INTERRUPT

Performance of Software Interrupts

➢ It decrements SP by 2 and pushes the flag register on the stack.

➢Disables INTR by clearing the IF.

➢ It resets the TF in the flag Register.

➢ It decrements SP by 2 and pushes CS on the stack.

➢ It decrements SP by 2 and pushes IP on the stack.

➢ Fetch the ISR address from the interrupt vector table.

398

Er. Pralhad Chapagain

Interrupt Priorities

399

Er. Pralhad Chapagain

400

Er. Pralhad Chapagain

Interrupt operations

Interrupt operations

Interrupt operations

Interrupt operations

	Slide 1: 2. Digital Logic and Microprocessor
	Slide 2: Syllabus
	Slide 3
	Slide 4: Number System
	Slide 5: POSITIVE AND NEGATIVE LOGIC
	Slide 6: Logic Gates
	Slide 7: Boolean Algebra
	Slide 8: Boolean Algebra
	Slide 9: Boolean Algebra
	Slide 10: DE MORGANS THEOREM
	Slide 11: BOOLEAN ALGEBRA
	Slide 12: STANDARD FORM AND CANONICAL FORM
	Slide 13: STANDARD FORM AND CANONICAL FORM
	Slide 14: STANDARD FORM AND CANONICAL FORM
	Slide 15: Boolean Algebra - MCQ
	Slide 16: KARNAUGH MAP (K-MAP) (SOP)
	Slide 17: KARNAUGH MAP (K-MAP) (SOP)
	Slide 18: KARNAUGH MAP (K-MAP) (SOP)
	Slide 19: KARNAUGH MAP (K-MAP) (SOP)
	Slide 20: KARNAUGH MAP (K-MAP) (SOP)
	Slide 21: KARNAUGH MAP (K-MAP) (SOP)
	Slide 22: Boolean Algebra - MCQ
	Slide 23: Boolean Algebra – MCQ –SET B
	Slide 24: Boolean Algebra – MCQ –SET B
	Slide 25: Boolean Algebra – MCQ –SET C
	Slide 26: Boolean Algebra – MCQ –SET C
	Slide 27: Boolean Algebra – MCQ –SET D
	Slide 28: Boolean Algebra – MCQ –SET D
	Slide 29
	Slide 30: ADDER - HALF
	Slide 31: ADDER - HALF
	Slide 32: ADDER - FULL
	Slide 33: ADDER - FULL
	Slide 34: SUBTRACTOR - HALF
	Slide 35: SUBTRACTOR - HALF
	Slide 36: SUBTRACTOR - FULL
	Slide 37: SUBTRACTOR - FULL
	Slide 38: SUBTRACTOR - FULL
	Slide 39: BINARY PARALLEL ADDER
	Slide 40: BINARY PARALLEL ADDER
	Slide 41: 4-BIT BINARY PARALLEL SUBTRACTOR
	Slide 42: 4-BIT BINARY PARALLEL SUBTRACTOR
	Slide 43: 4-BIT BINARY PARALLEL ADDER/SUBTRACTOR
	Slide 44: 4-BIT BINARY PARALLEL ADDER/SUBTRACTOR
	Slide 45: DECODERS
	Slide 46: DECODERS
	Slide 47: DECODERS
	Slide 48: IMPLEMENTATION OF HIGHER ORDER DECODERS
	Slide 49: IMPLEMENTATION OF HIGHER ORDER DECODERS
	Slide 50: ENCODERS
	Slide 51: ENCODERS
	Slide 52: ENCODERS – OCTAL TO BINARY ENCODER
	Slide 53: ENCODERS – OCTAL TO BINARY ENCODER
	Slide 54: ENCODERS – PRIORITY ENCODER
	Slide 55: ENCODERS – PRIORITY ENCODER
	Slide 56: DEMULTIPLEXERS (DEMUX)
	Slide 57: DEMULTIPLEXERS (DEMUX)
	Slide 58: IMPLEMENTATION OF HIGHER ORDER DE-MULTIPLEXERS
	Slide 59: IMPLEMENTATION OF HIGHER ORDER DE-MULTIPLEXERS
	Slide 60: MULTIPLEXERS (MUX)
	Slide 61: MULTIPLEXERS (MUX)
	Slide 62: MULTIPLEXERS (MUX)
	Slide 63: IMPLEMENTATION OF HIGHER ORDER MULTIPLEXERS
	Slide 64: IMPLEMENTATION OF HIGHER ORDER MULTIPLEXERS
	Slide 65: BINARY ADDITION
	Slide 66: BINARY SUBTRACTION
	Slide 67: SIGNED AND UNSIGNED BINARY NUMBERS
	Slide 68: SIGNED AND UNSIGNED BINARY NUMBERS
	Slide 69: Combinational and Arithmetic Circuits – SET A
	Slide 70: Combinational and Arithmetic Circuits – SET A
	Slide 71: Combinational and Arithmetic Circuits – SET B
	Slide 72: Combinational and Arithmetic Circuits – SET B
	Slide 73: Combinational and Arithmetic Circuits – SET C
	Slide 74: Combinational and Arithmetic Circuits – SET D
	Slide 75: Combinational and Arithmetic Circuits – SET D
	Slide 76
	Slide 77: SEQUENTIAL LOGIC
	Slide 78: SEQUENTIAL LOGIC - TYPES
	Slide 79: SEQUENTIAL LOGIC - TYPES
	Slide 80: CLOCK SIGNAL AND TRIGGERING
	Slide 81: CLOCK SIGNAL AND TRIGGERING
	Slide 82: CLOCK SIGNAL AND TRIGGERING
	Slide 83: CLOCK SIGNAL AND TRIGGERING
	Slide 84: LATCHES
	Slide 85: FLIP-FLOP
	Slide 86: FLIP-FLOP – SR FLIP-FLOP
	Slide 87: FLIP-FLOP – SR FLIP-FLOP
	Slide 88: FLIP-FLOP – D FLIP-FLOP
	Slide 89: FLIP-FLOP – D FLIP-FLOP
	Slide 90: FLIP-FLOP – JK FLIP-FLOP
	Slide 91: FLIP-FLOP – JK FLIP-FLOP
	Slide 92: FLIP-FLOP – T FLIP-FLOP
	Slide 93: FLIP-FLOP – T FLIP-FLOP
	Slide 94: MASTER – SLAVE JK FLIPFLOP
	Slide 95: MASTER – SLAVE JK FLIPFLOP
	Slide 96: MASTER – SLAVE JK FLIPFLOP
	Slide 97: COUNTERS
	Slide 98: SYNCHRONOUS VS ASYNCHRONOUS COUNTERS
	Slide 99: ASYNCHRONOUS COUNTERS
	Slide 100: REGISTERS
	Slide 101: REGISTERS
	Slide 102: REGISTERS
	Slide 103: REGISTERS
	Slide 104: REGISTERS
	Slide 105: REGISTERS
	Slide 106: REGISTERS
	Slide 107: SHIFT REGISTERS
	Slide 108: SHIFT REGISTERS
	Slide 109: SHIFT REGISTERS
	Slide 110: RING COUNTERS
	Slide 111: RING COUNTERS
	Slide 112: RING COUNTERS
	Slide 113: JOHNSON COUNTERS
	Slide 114: JOHNSON COUNTERS
	Slide 115: JOHNSON COUNTERS
	Slide 116: Sequential Circuit – SET A
	Slide 117: Sequential Circuit – SET A
	Slide 118: Sequential Circuit – SET A
	Slide 119: Sequential Circuit – SET A
	Slide 120: Sequential Circuit – SET A
	Slide 121: Sequential Circuit – SET A
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127: Introduction to microprocessor
	Slide 128: Introduction to microprocessor
	Slide 129: Introduction to microprocessor
	Slide 130: microcontroller
	Slide 131: Microprocessor vs microcontroller
	Slide 132: Organization of microprocessor based system
	Slide 133: Bus organization/ 3-bus architecture
	Slide 134: Bus organization/ 3-bus architecture
	Slide 135: Bus organization/ 3-bus architecture
	Slide 136: Bus organization/ 3-bus architecture
	Slide 137: Stored program concept and von Neumann machine
	Slide 138: Stored program concept and von Neumann machine
	Slide 139: Stored program concept and von Neumann machine
	Slide 140: Stored program concept and von Neumann machine
	Slide 141: Stored program concept and von Neumann machine
	Slide 142: Stored program concept and von Neumann machine
	Slide 143: Harvard Architecture
	Slide 144: Harvard Architecture
	Slide 145: Harvard Architecture
	Slide 146: Harvard Architecture
	Slide 147: Introduction to register transfer language (rtl)
	Slide 148: Introduction to 8085 microprocessor
	Slide 149: Internal Architecture and Feature of 8085 Microprocessor
	Slide 150: Internal Architecture and Feature of 8085 Microprocessor
	Slide 151: Internal Architecture and Feature of 8085 Microprocessor
	Slide 152: Internal Architecture and Feature of 8085 Microprocessor
	Slide 153: Internal Architecture and Feature of 8085 Microprocessor
	Slide 154: Internal Architecture and Feature of 8085 Microprocessor
	Slide 155: Internal Architecture and Feature of 8085 Microprocessor
	Slide 156: Internal Architecture and Feature of 8085 Microprocessor
	Slide 157: Internal Architecture and Feature of 8085 Microprocessor
	Slide 158: Instruction Format
	Slide 159: Instruction Format
	Slide 160: Instruction Format
	Slide 161: Instruction Format
	Slide 162: Address modes of 8085
	Slide 163: Address modes of 8085
	Slide 164: Address modes of 8085
	Slide 165: Address modes of 8085
	Slide 166: Address modes of 8085
	Slide 167: Address modes of 8085
	Slide 168: Registers in 8085
	Slide 169: Registers in 8085
	Slide 170: Registers in 8085
	Slide 171: Programming model of 8085
	Slide 172: Introduction to 8086 Microprocessor
	Slide 173: Features 8086 Microprocessor
	Slide 174: Comparison with 8085
	Slide 175: Internal Architecture of 8086
	Slide 176: Execution unit (EU) and its components
	Slide 177: Execution unit (EU) and its components
	Slide 178: Execution unit (EU) and its components
	Slide 179: Execution unit (EU) and its components
	Slide 180: Segment and offset address
	Slide 181: Segment and offset address
	Slide 182: Addressing modes in 8086
	Slide 183: Addressing modes in 8086
	Slide 184: Addressing modes in 8086
	Slide 185: Addressing modes in 8086
	Slide 186: Addressing modes in 8086
	Slide 187: Addressing modes in 8086
	Slide 188: Addressing modes in 8086
	Slide 189: Addressing modes in 8086
	Slide 190: Coding in assembly language
	Slide 191: Coding in assembly language
	Slide 192: Coding in assembly language
	Slide 193: assembly language features
	Slide 194: assembly language features
	Slide 195: assembly language features
	Slide 196: assembly language features
	Slide 197: assembly language features
	Slide 198: assembly language features
	Slide 199: assembly language features
	Slide 200: assembly language features
	Slide 201: assembly language features
	Slide 202: assembly language features
	Slide 203: assembly language features
	Slide 204: assembly language features
	Slide 205: assembly language features
	Slide 206: assembly language features
	Slide 207: assembly language features
	Slide 208: Microprocessor– SET A
	Slide 209: Microprocessor– SET A
	Slide 210: Microprocessor– SET A
	Slide 211: Microprocessor– SET A
	Slide 212: Microprocessor– SET A
	Slide 213: Microprocessor– SET A
	Slide 214: Microprocessor– SET A
	Slide 215: Microprocessor– SET A
	Slide 216
	Slide 217: MICROPROCESSOR SYSTEM
	Slide 218: PIN CONFIGURATION OF 8085
	Slide 219: PIN CONFIGURATION OF 8085
	Slide 220: PIN CONFIGURATION OF 8085
	Slide 221: PIN CONFIGURATION OF 8085
	Slide 222: PIN CONFIGURATION OF 8085
	Slide 223: PIN CONFIGURATION OF 8085
	Slide 224: PIN CONFIGURATION OF 8085
	Slide 225: PIN CONFIGURATION OF 8085
	Slide 226: PIN CONFIGURATION OF 8085
	Slide 227: PIN CONFIGURATION OF 8085
	Slide 228: PIN CONFIGURATION OF 8085
	Slide 229: PIN CONFIGURATION OF 8085
	Slide 230: Bus structure
	Slide 231: Bus structure
	Slide 232: Bus structure
	Slide 233: Bus structure
	Slide 234: Bus types
	Slide 235: Bus types
	Slide 236: Bus types
	Slide 237: Bus types
	Slide 238: Timing diagram
	Slide 239: Instruction cycle
	Slide 240: fetch cycle
	Slide 241: Execute cycle
	Slide 242: machine cycle
	Slide 243: Opcode fetch machine cycle
	Slide 244: Opcode fetch machine cycle
	Slide 245: Opcode fetch machine cycle
	Slide 246: MEMORY READ machine cycle
	Slide 247: MEMORY READ machine cycle
	Slide 248: MEMORY WRITE machine cycle
	Slide 249: MEMORY WRITE machine cycle
	Slide 250: IO READ machine cycle
	Slide 251: IO READ machine cycle
	Slide 252: IO write machine cycle
	Slide 253: IO write machine cycle
	Slide 254: memory
	Slide 255: memory
	Slide 256: memory
	Slide 257: memory
	Slide 258: memory
	Slide 259: memory
	Slide 260: memory
	Slide 261: memory
	Slide 262: memory
	Slide 263: memory
	Slide 264: memory
	Slide 265: memory
	Slide 266: memory
	Slide 267: Memory hierarchy
	Slide 268: Memory hierarchy
	Slide 269: Memory hierarchy
	Slide 270: Memory hierarchy
	Slide 271: Memory structure and its requirements
	Slide 272: Address decoding
	Slide 273: Serial interface
	Slide 274: Parallel interface
	Slide 275: Synchronizing the computer with peripherals
	Slide 276: Synchronizing the computer with peripherals
	Slide 277: Synchronizing the computer with peripherals
	Slide 278: Synchronizing the computer with peripherals
	Slide 279: Synchronizing the computer with peripherals
	Slide 280: Synchronizing the computer with peripherals
	Slide 281: Programmable peripheral interface (ppi) – 8255A
	Slide 282: Programmable peripheral interface (ppi) – 8255A
	Slide 283: Programmable peripheral interface (ppi) – 8255A
	Slide 284: Programmable peripheral interface (ppi) – 8255A
	Slide 285: Programmable peripheral interface (ppi) – 8255A
	Slide 286: Programmable peripheral interface (ppi) – 8255A
	Slide 287: Programmable peripheral interface (ppi) – 8255A
	Slide 288: Programmable peripheral interface (ppi) – 8255A
	Slide 289: Programmable peripheral interface (ppi) – 8255A
	Slide 290: Programmable peripheral interface (ppi) – 8255A
	Slide 291: Programmable peripheral interface (ppi) – 8255A
	Slide 292: Programmable peripheral interface (ppi) – 8255A
	Slide 293: Programmable peripheral interface (ppi) – 8255A
	Slide 294: Serial data transmission
	Slide 295: Serial data transmission - advantages
	Slide 296: Serial data transmission
	Slide 297: Serial data transmission
	Slide 298: Serial data transmission
	Slide 299: Serial data transmission
	Slide 300: Serial data transmission
	Slide 301: Serial data transmission
	Slide 302: Serial data transmission
	Slide 303: Bit rate and baud rate
	Slide 304: Standards in serial i/o
	Slide 305: Rs-232c
	Slide 306: Rs-232c
	Slide 307: Rs-232c
	Slide 308: Rs-232c
	Slide 309: Rs-232c
	Slide 310: Rs-232c
	Slide 311: Rs-232c
	Slide 312: Rs-232c
	Slide 313: Rs-232c – null modem connection
	Slide 314: Rs-232c – null modem connection
	Slide 315: Rs-232c – connection to printer
	Slide 316: Rs-232c – connection to printer
	Slide 317: Rs-423a
	Slide 318: Rs-422a
	Slide 319: comparison
	Slide 320: DMA (DIRECT MEMORY ACCESS)
	Slide 321: DMA (DIRECT MEMORY ACCESS)
	Slide 322: DMA (DIRECT MEMORY ACCESS)
	Slide 323: DMA (DIRECT MEMORY ACCESS)
	Slide 324: DMA (DIRECT MEMORY ACCESS)
	Slide 325: DMA (DIRECT MEMORY ACCESS)
	Slide 326: DMA (DIRECT MEMORY ACCESS)
	Slide 327: PROGRAMMABLE DMA CONTROLLER – INTEL 8257
	Slide 328: PROGRAMMABLE DMA CONTROLLER – INTEL 8257
	Slide 329: PROGRAMMABLE DMA CONTROLLER – INTEL 8257
	Slide 330: PROGRAMMABLE DMA CONTROLLER – INTEL 8257
	Slide 331: Microprocessor System
	Slide 332: Microprocessor System
	Slide 333: Microprocessor System
	Slide 334: Microprocessor System
	Slide 335: Microprocessor System
	Slide 336: Microprocessor System
	Slide 337: Microprocessor System
	Slide 338: Microprocessor System
	Slide 339: Microprocessor System
	Slide 340: Microprocessor System
	Slide 341: Microprocessor System
	Slide 342: Microprocessor System
	Slide 343
	Slide 344: interrupts
	Slide 345: interrupts
	Slide 346: Interrupt operations
	Slide 347: Interrupt operations
	Slide 348: Interrupt operations
	Slide 349: Polling versus Interrupt
	Slide 350: Polling versus Interrupt
	Slide 351: Polling versus Interrupt
	Slide 352: Interrupt structures
	Slide 353: Polled interrupt
	Slide 354: Polled interrupt
	Slide 355: Daisy Chain (Vectored) interrupt
	Slide 356: Daisy Chain (Vectored) interrupt
	Slide 357: Interrupt processing sequence
	Slide 358: Interrupt processing sequence
	Slide 359: Interrupt - Types
	Slide 360: Interrupt - Types
	Slide 361: MULTIPLE INTERRUPTS DEALING APPROACHES:
	Slide 362: MULTIPLE INTERRUPTS DEALING APPROACHES:
	Slide 363: INTERRUPT SERVICE ROUTINE
	Slide 364: INTERRUPT SERVICE ROUTINE
	Slide 365: Interrupt processing in 8085
	Slide 366: Types of interrupt
	Slide 367: Types of interrupt
	Slide 368: Types of interrupt
	Slide 369: Types of interrupt
	Slide 370: Types of interrupt
	Slide 371: Types of interrupt
	Slide 372: Types of interrupt
	Slide 373: Interrupt Instructions
	Slide 374: Interrupt Instructions
	Slide 375: Interrupt Instructions
	Slide 376: Interrupt Instructions
	Slide 377: Interrupt Instructions
	Slide 378: Using programmable interrupt controller (PIC)
	Slide 379: Using programmable interrupt controller (PIC)
	Slide 380: Using programmable interrupt controller (PIC)
	Slide 381: Using programmable interrupt controller (PIC)
	Slide 382: Using programmable interrupt controller (PIC)
	Slide 383: Using programmable interrupt controller (PIC)
	Slide 384: Using programmable interrupt controller (PIC)
	Slide 385: Using programmable interrupt controller (PIC)
	Slide 386: INTERRUPT PROCESSING IN 8086
	Slide 387: INTERRUPT PROCESSING IN 8086
	Slide 388: Interrupt Vector Table and its Organization
	Slide 389: Interrupt Vector Table and its Organization
	Slide 390: Interrupt Vector Table and its Organization
	Slide 391: Interrupt Vector Table and its Organization
	Slide 392: Interrupt Vector Table and its Organization
	Slide 393: Dedicated interrupts
	Slide 394: Dedicated interrupts
	Slide 395: Software and hardware interrupt
	Slide 396: Software and hardware interrupt
	Slide 397: Software and hardware interrupt
	Slide 398: Software and hardware interrupt
	Slide 399
	Slide 400
	Slide 401: Interrupt operations
	Slide 402: Interrupt operations
	Slide 403: Interrupt operations
	Slide 404: Interrupt operations

